Cho hai dãy số (un) và (vn) với un = 2 + 1/n, vn= 3 - 2/n. Tính và so sánh: lim n đến  + vô cùng ( un + vn) và lim n đến  + vô cùng un + lim n đến  + vô cùng vn


Câu hỏi:

Cho hai dãy số (un) và (vn) với \({u_n} = 2 + \frac{1}{n},\,\,{v_n} = 3 - \frac{2}{n}\).

Tính và so sánh: \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} + {v_n}} \right)\) và \(\mathop {\lim }\limits_{n \to + \infty } {u_n} + \mathop {\lim }\limits_{n \to + \infty } {v_n}\).

Trả lời:

Lời giải:

+) Ta có: \({u_n} + {v_n} = \left( {2 + \frac{1}{n}} \right) + \left( {3 - \frac{2}{n}} \right) = 5 - \frac{1}{n}\).

Lại có \(\left( {{u_n} + {v_n}} \right) - 5 = \left( {5 - \frac{1}{n}} \right) - 5 = - \frac{1}{n} \to 0\) khi n +∞.

Do vậy, \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} + {v_n}} \right) = 5\).

+) Ta có: \({u_n} - 2 = \left( {2 + \frac{1}{n}} \right) - 2 = \frac{1}{n} \to 0\) khi n +∞.

Do vậy, \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 2\).

Và \({v_n} - 3 = \left( {3 - \frac{2}{n}} \right) - 3 = - \frac{2}{n} \to 0\)khi n +∞.

Do vây, \(\mathop {\lim }\limits_{n \to + \infty } {v_n} = 3\).

Khi đó, \(\mathop {\lim }\limits_{n \to + \infty } {u_n} + \mathop {\lim }\limits_{n \to + \infty } {v_n}\) = 2 + 3 = 5 = \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} + {v_n}} \right)\).

Vậy \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} + {v_n}} \right)\) = \(\mathop {\lim }\limits_{n \to + \infty } {u_n} + \mathop {\lim }\limits_{n \to + \infty } {v_n}\).

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Cho dãy số (u) với \({u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{n}\).

a) Biểu diễn năm số hạng đầu của dãy số này trên trục số.

b) Bắt đầu từ số hạng nào của dãy, khoảng cách từ un đến 0 nhỏ hơn 0,01?

Xem lời giải »


Câu 2:

Chứng minh rằng \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{{\left( { - 1} \right)}^{n - 1}}}}{{{3^n}}} = 0\).

Xem lời giải »


Câu 3:

Cho dãy số (un) với \({u_n} = \frac{{n + {{\left( { - 1} \right)}^n}}}{n}\). Xét dãy số (vn) xác định bởi vn = un – 1.

Tính \(\mathop {\lim }\limits_{n \to + \infty } {v_n}\).

Xem lời giải »


Câu 4:

Cho dãy số (un) với \({u_n} = \frac{{{{3.2}^n} - 1}}{{{2^n}}}\). Chứng minh rằng \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 3\).

Xem lời giải »


Câu 5:

Tìm \(\mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt {2{n^2} + 1} }}{{n + 1}}\).

Xem lời giải »


Câu 6:

Cho hình vuông cạnh 1 (đơn vị độ dài). Chia hình vuông đó thành bốn hình vuông nhỏ bằng nhau, sau đó tô màu hình vuông nhỏ góc dưới bên trái (H.5.2). Lặp lại các thao tác này với hình vuông nhỏ góc trên bên phải. Giả sử quá trình trên tiếp diễn vô hạn lần. Gọi u1, u2, ..., un, ... lần lượt là độ dài cạnh của các hình vuông được tô màu.

Media VietJack

a) Tính tổng Sn = u1 + u2 + ... + un.

b) Tìm S = \(\mathop {\lim }\limits_{n \to + \infty } {S_n}\).

Xem lời giải »


Câu 7:

Tính tổng \(S = 2 + \frac{2}{7} + \frac{2}{{{7^2}}} + ... + \frac{2}{{{7^{n - 1}}}} + ...\)

Xem lời giải »


Câu 8:

Để đơn giản, ta giả sử Achilles chạy với vận tốc 100 km/h, vận tốc của rùa là 1 km/h và khoảng cách ban đầu là a = 100 (km).

a) Tính thời gian t1, t2, ..., tn, ... tương ứng để Achilles đi từ A1 đến A2, từ A2 đến A3, ... từ An đến An + 1, ...

b) Tính tổng thời gian cần thiết để Achilles chạy hết các quãng đường A1A2, A2A3, ..., A­nAn + 1, ..., tức là thời gian cần thiết để Achilles đuổi kịp rùa.

c) Sai lầm trong lập luận của Zeno là ở đâu?

Xem lời giải »