Cho hàm số f( x ) = | x - 1|/x - 1. a) Cho xn = 1 - 1/n + 1 và x'n = 1 + 1/n. Tính yn = f(xn) và y'n = f(x'n). b) Tìm giới hạn của các dãy số (yn) và (y'n). c) Cho các dãy số (xn) và (x'n)


Câu hỏi:

Cho hàm số \(f\left( x \right) = \frac{{\left| {x - 1} \right|}}{{x - 1}}\).

a) Cho \({x_n} = 1 - \frac{1}{{n + 1}}\) và \({x'_n} = 1 + \frac{1}{n}\). Tính yn = f(xn) và y'n = f(x'n).

b) Tìm giới hạn của các dãy số (yn) và (y'n).

c) Cho các dãy số (xn) và (x'n) bất kì sao cho xn < 1 < x'n và xn 1, x'n 1, tính \(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right)\) và \[\mathop {\lim }\limits_{n \to + \infty } f\left( {{{x'}_n}} \right)\].

Trả lời:

Lời giải:

a) Ta có: \({x_n} = 1 - \frac{1}{{n + 1}} < 1\) với mọi n > 0 \( \Rightarrow {x_n} - 1 < 0\) với mọi n > 0.

Do đó, \({y_n} = f\left( {{x_n}} \right) = \frac{{\left| {{x_n} - 1} \right|}}{{{x_n} - 1}}\)\( = \frac{{ - \left( {{x_n} - 1} \right)}}{{{x_n} - 1}} = - 1\).

Ta cũng có: \({x'_n} = 1 + \frac{1}{n} > 1\) với mọi n > 0 x'n – 1 > 0 với mọi n > 0.

Do đó, \({y'_n} = f\left( {{{x'}_n}} \right) = \frac{{\left| {{{x'}_n} - 1} \right|}}{{{{x'}_n} - 1}}\)\( = \frac{{{{x'}_n} - 1}}{{{{x'}_n} - 1}} = 1\).

b) Ta có \(\mathop {\lim }\limits_{n \to + \infty } {y_n} = \mathop {\lim }\limits_{n \to + \infty } \left( { - 1} \right) = - 1\); \(\mathop {\lim }\limits_{n \to + \infty } {y'_n} = \mathop {\lim }\limits_{n \to + \infty } 1 = 1\).

c) Ta có: \(f\left( x \right) = \frac{{\left| {x - 1} \right|}}{{x - 1}}\)\( = \left\{ \begin{array}{l}\frac{{x - 1}}{{x - 1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,n\^e 'u\,\,x - 1 > 0\,\,\,\,\,\\\frac{{ - \left( {x - 1} \right)}}{{x - 1}}\,\,\,\,\,\,\,\,n\^e 'u\,\,x - 1 < 0\end{array} \right.\)\( = \left\{ \begin{array}{l}1\,\,\,\,\,\,\,\,n\^e 'u\,\,x - 1 > 0\,\,\,\,\,\\ - 1\,\,\,\,n\^e 'u\,\,x - 1 < 0\end{array} \right.\)

Vì xn < 1 < x'n, suy ra xn – 1 < 0 và x'n – 1 > 0 với mọi n.

Do đó, f(xn) = – 1 và f(x'n) = 1.

Vậy \(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right)\) = – 1 và \[\mathop {\lim }\limits_{n \to + \infty } f\left( {{{x'}_n}} \right)\] = 1.

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Trong Thuyết tương đối của Einstein, khối lượng của vật chuyển động với vận tốc v cho bởi công thức

\(m = \frac{{{m_0}}}{{\sqrt {1 - \frac{{{v^2}}}{{{c^2}}}} }}\),

trong đó m0 là khối lượng của vật khi nó đứng yên, c là vận tốc ánh sáng. Chuyện gì xảy ra với khối lượng của vật khi vận tốc của vật gần với vận tốc ánh sáng?

Xem lời giải »


Câu 2:

Cho hàm số \(f\left( x \right) = \frac{{4 - {x^2}}}{{x - 2}}\).

a) Tìm tập xác định của hàm số f(x).

b) Cho dãy số \({x_n} = \frac{{2n + 1}}{n}\). Rút gọn f(xn) và tính giới hạn của dãy (un) với un = f(xn).

c) Với dãy số (xn) bất kì sao cho xn ≠ 2 và xn 2, tính f(xn) và tìm \(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right)\).

Xem lời giải »


Câu 3:

Tính \(\mathop {\lim }\limits_{x \to 1} \frac{{x - 1}}{{\sqrt x - 1}}\).

Xem lời giải »


Câu 4:

Cho hàm số \[f\left( x \right) = \left\{ \begin{array}{l} - x\,\,\,\,\,\,\,n\^e 'u\,\,\,\,x < 0\\\sqrt x \,\,\,\,\,\,n\^e 'u\,\,\,\,x \ge 0.\end{array} \right.\]

Tính \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right)\), \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to 0} f\left( x \right)\).

Xem lời giải »


Câu 5:

Cho hàm số \(f\left( x \right) = 1 + \frac{2}{{x - 1}}\) có đồ thị như Hình 5.4.

Media VietJack

Giả sử (xn) là dãy số sao cho xn > 1, xn +∞. Tính f(xn) và tìm \(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right)\).

Xem lời giải »


Câu 6:

Tính \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} + 2} }}{{x + 1}}\).

Xem lời giải »


Câu 7:

Cho tam giác vuông OAB với A = (a; 0) và B = (0; 1) như Hình 5.5. Đường cao OH có độ dài là h.

Media VietJack

a) Tính h theo a.

b) Khi điểm A dịch chuyển về O, điểm H thay đổi thế nào? Tại sao?

c) Khi A dịch chuyển ra vô cực theo chiều dương của trục Ox, điểm H thay đổi thế nào? Tại sao?

Xem lời giải »