Giải SBT Toán 10 trang 37 Tập 2 Cánh diều


Haylamdo biên soạn giải Sách bài tập Toán 10 trang 37 Tập 2 trong Bài 3: Các số liệu đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm SBT Toán 10 Cánh diều Tập 2 hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 37.

Giải SBT Toán 10 trang 37 Tập 2 Cánh diều

Bài 14 trang 37 SBT Toán 10 Tập 2: Cho mẫu số liệu: 21 22 23 24 25

a) Khoảng biến thiên của mẫu số liệu trên là:

A. 1.

B. 2.

C. 3.

D. 4.

b) Khoảng tứ phân vị của mẫu số liệu trên là:

A. 1.

B. 2.

C. 3.

D. 4.

c) Phương sai của mẫu số liệu trên là:

A. 1.

B. 2.

C. 3.

D. 4.

d) Độ lệch chuẩn của mẫu số liệu trên là:

A. 1.

B. 2.

C. 3.

D. 4.

Lời giải:

a) Trong mẫu số liệu trên, số lớn nhất là 25 và số nhỏ nhất là 21.

Vậy khoảng biến thiên của mẫu số liệu trên là: R = xmax – xmin = 25 – 21 = 4.

Do đó ta chọn phương án D.

b) Mẫu số liệu trên đã được sắp xếp theo thứ tự không giảm.

Trung vị của mẫu số liệu trên là: Me = 23.

Trung vị của dãy 21; 22 là: 21+222= 21,5.

Trung vị của dãy 24; 25 là: 24+252= 24,5.

Suy ra Q1 = 21,5; Q2 = 23; Q3 = 24,5.

Do đó khoảng tứ phân vị của mẫu số liệu trên là: ∆Q = Q3 – Q1 = 24,5 – 21,5 = 3.

Vậy ta chọn phương án C.

c) Số trung bình cộng của mẫu số liệu trên là: x¯=21+22+23+24+255= 23.

Ta có (21 – 23)2 + (22 – 23)2 + (23 – 23)2 + (24 – 23)2 + (25 – 23)2 = 10.

Phương sai của mẫu số liệu trên là: s2 = 105 = 2.

Vậy ta chọn phương án B.

d) Độ lệch chuẩn của mẫu số liệu trên là: s=s2=2.

Vậy ta chọn phương án B.

Lời giải sách bài tập Toán lớp 10 Bài 3: Các số liệu đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm Cánh diều hay khác:

Xem thêm lời giải Sách bài tập Toán 10 Cánh diều hay, chi tiết khác: