Hãy tìm số trung bình, tứ phân vị và mốt của các mẫu số liệu sau SBT Toán 10 Tập 1


Haylamdo biên soạn và sưu tầm lời giải Bài 1 trang 122 SBT Toán 10 Tập 1 trong Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu. Với lời giải chi tiết nhất hy vọng sẽ giúp các bạn dễ dàng nắm được cách làm bài tập Sách bài tập Toán 10.

Giải sách bài tập Toán 10 Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu

Bài 1 trang 122 SBT Toán 10 Tập 1: Hãy tìm số trung bình, tứ phân vị và mốt của các mẫu số liệu sau:

a) 15; 15; 12; 14; 17; 16; 16; 15; 15.

b) 5; 7; 4; 3; 5; 6; 7; 8; 9; 7; 2.

c) 7; 6; 8; 7; 7; 4; 5; 10; 9; 9; 8; 5.

d) 87; 87; 88; 88; 70; 83; 85; 86; 97; 89; 92; 89; 90.

Lời giải:

a) Ta có: n = 9

Sắp xếp mẫu số liệu theo thứ tự không giảm:

12; 14; 15; 15; 15; 15; 16; 16; 17

+) Số trung bình:

Hãy tìm số trung bình, tứ phân vị và mốt của các mẫu số liệu sau

+) Vì n = 9 là số lẻ nên ta có tứ phân vị thứ hai Q2 = 15.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, không kể Q2 vì n là số lẻ: 12; 14; 15; 15.

Vậy Q1 = (14 + 15) : 2 = 14,5.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, không kể Q2 vì n là số lẻ: 15; 16; 16; 17.

Vậy Q3 = (16 + 16) : 2 = 16.

+) Vì số 15 là giá trị xuất hiện nhiều nhất trong mẫu số liệu (4 lần). Nên suy ra Mốt của mẫu số liệu là Mo = 15.

b) Ta có: n = 11

Sắp xếp mẫu số liệu theo thứ tự không giảm:

2; 3; 4; 5; 5; 6; 7; 7; 7; 8; 9

+) Số trung bình:

Hãy tìm số trung bình, tứ phân vị và mốt của các mẫu số liệu sau

+) Vì n = 11 là số lẻ nên ta có tứ phân vị thứ hai Q2 = 6.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, không kể Q2 vì n là số lẻ: 2; 3; 4; 5; 5.

Vậy Q1 = 4.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, không kể Q2 vì n là số lẻ: 7; 7; 7; 8; 9.

Vậy Q3 = 7.

+) Vì số 7 là giá trị xuất hiện nhiều nhất trong mẫu số liệu (3 lần). Nên suy ra Mốt của mẫu số liệu là Mo = 7.

c) Ta có: n = 12

Sắp xếp mẫu số liệu theo thứ tự không giảm:

4; 5; 5; 6; 7; 7; 7; 8; 8; 9; 9; 10

+) Số trung bình:

Hãy tìm số trung bình, tứ phân vị và mốt của các mẫu số liệu sau

+) Vì n = 12 là số chẵn nên ta có tứ phân vị thứ hai Q2 = (7 + 7) : 2 = 7.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Q2 vì n là số chẵn: 4; 5; 5; 6; 7; 7.

Vậy Q1 = (5 + 6) : 2 = 5,5.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Q2 vì n là số chẵn: 7; 8; 8; 9; 9; 10.

Vậy Q3 = (8 + 9) : 2 = 8,5.

+) Vì số 7 là giá trị xuất hiện nhiều nhất trong mẫu số liệu (3 lần). Nên suy ra Mốt của mẫu số liệu là Mo = 7.

d) Ta có: n = 13

Sắp xếp mẫu số liệu theo thứ tự không giảm:

70; 83; 85; 86; 87; 87; 88; 88; 89; 89; 90; 92; 97

+) Số trung bình:

Hãy tìm số trung bình, tứ phân vị và mốt của các mẫu số liệu sau

+) Vì n = 13 là số lẻ nên ta có tứ phân vị thứ hai Q2 = 88.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, không kể Q2 vì n là số lẻ: 70; 83; 85; 86; 87; 87.

Vậy Q1 = (85 + 86) : 2 = 85,5.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, không kể Q2 vì n là số lẻ: 88; 89; 89; 90; 92; 97.

Vậy Q3 = (89 + 90) : 2 = 89,5.

+) Vì số 87, 88, 89 là các giá trị xuất hiện nhiều nhất trong mẫu số liệu (2 lần). Nên suy ra Mốt của mẫu số liệu là Mo {87; 88; 89}.

Xem thêm lời giải Sách bài tập Toán 10 Chân trời sáng tạo hay, chi tiết khác: