Giải SBT Toán 10 trang 19 Tập 2 Kết nối tri thức


Với Giải SBT Toán 10 trang 19 Tập 2 trong Bài 17: Dấu của tam thức bậc hai Sách bài tập Toán 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 19.

Giải SBT Toán 10 trang 19 Tập 2 Kết nối tri thức

Bài 6.27 trang 19 Sách bài tập Toán lớp 10 Tập 2: Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh rằng:

b2x2 – (b2 + c2 – a2)x + c2 > 0, ∀x ∈ ℝ.

Hướng dẫn giải:

Vì a, b, c là độ dài ba cạnh của một tam giác nên a, b, c > 0.

Coi f(x) = b2x2 – (b2 + c2 – a2)x + c2 là một tam thức bậc hai ẩn x dạng f(x) = Ax2 + Bx + C.

Xét phương trình bậc hai b2x2 – (b2 + c2 – a2)x + c2 = 0 có:

A = b2 > 0 (vì b là độ dài cạnh của tam giác)

∆ = B2 – 4AC = [– (b2 + c2 – a2)]2 – 4.b2.c2

= (b2 + c2 – a2)2 – (2bc)2

= (b2 + c2 – a2 – 2bc)(b2 + c2 – a2 + 2bc)

= [(b – c)2 – a2][(b + c)2 – a2]

= (b – c – a)(b – c + a)(b + c – a)(b + c + a)

Vì a, b, c là ba cạnh của tam giác nên ta có:

a + b – c > 0

b + c – a > 0

b + c + a > 0

b – c – a = b – (c + a) < 0

Do đó ∆ < 0.

Vậy b2x2 – (b2 + c2 – a2)x + c2 > 0, ∀x ∈ ℝ (điều cần phải chứng minh).

Lời giải sách bài tập Toán lớp 10 Bài 17: Dấu của tam thức bậc hai Kết nối tri thức hay khác:

Xem thêm lời giải sách bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác: