Tìm hai số tự nhiên a, b sao cho: a + 2b = 48, a < 24 và ƯCLN(a, b) + 3.BCNN(a, b) = 114
Giải sách bài tập Toán lớp 6 Bài ôn tập cuối chương 1
Bài 139 trang 38 sách bài tập Toán lớp 6 Tập 1 - Cánh diều: Tìm hai số tự nhiên a, b sao cho: a + 2b = 48, a < 24 và ƯCLN(a, b) + 3.BCNN(a, b) = 114.
Lời giải:
Ta có a + 2b = 48; vì 2b, 48 chia hết cho 2. Do đó a chia hết cho 2.
Ta lại có: ƯCLN(a, b) + 3.BCNN(a, b) = 114.
Vì 3.BCNN(a, b) chia hết cho 3, 114 cũng chia hết cho 3 nên ƯCLN(a, b) chia hết cho 3 hay a chia hết cho 3.
Suy ra a vừa chia hết cho 2, vừa chia hết cho 3 nên a chia hết cho 6 (vì 2 và 3 nguyên tố cùng nhau) hay a là bội của 6.
Ta có: B(6) = {0; 6; 12; 18; 24; 30; 36; …}.
Do đó, a ∈ {0; 6; 12; 18; 24; 30; 36; …}. .
Vì a < 24 nên a ∈ {6; 12; 18} .
Ta có bảng sau:
a |
6 |
12 |
18 |
b |
21 |
18 |
15 |
ƯCLN(a,b) |
3 |
6 |
3 |
BCNN(a, b) |
42 |
36 |
90 |
ƯCLN(a, b) + 3.BCNN(a, b) |
129 (loại) |
114 (thỏa mãn) |
273 (loại) |
Vậy a = 12, b = 18 thỏa mãn yêu cầu bài toán.