Rút gọn biểu thức sau: a) A = 1 + 3 + 3^2 + 3^3 + … + 3^99 + 3^100
Giải sách bài tập Toán lớp 6 Bài 5. Phép tính lũy thừa với số mũ tự nhiên
Bài 43 trang 18 sách bài tập Toán lớp 6 Tập 1 - Cánh diều: Rút gọn biểu thức sau:
a) A = 1 + 3 + 32 + 33 + … + 399 + 3100;
b) B = 2100 – 299 + 298 – 297 + … - 23 + 22 – 2 + 1.
Lời giải:
a) A = 1 + 3 + 32 + 33 + … + 399 + 3100;
Ta có 3A = 3 + 32 + 33 + … + 399 + 3100 + 3101
Khi đó: 3A – A = 3 + 32 + 33 + … + 399 + 3100 + 3101 – (1 + 3 + 32 + 33 + … + 399 + 3100)
= 3101 – 1.
Suy ra: 2A = 3101 – 1
A = (3101 – 1):2.
Vậy A = (3101 – 1):2.
b) B = 2100 – 299 + 298 – 297 + … - 23 + 22 – 2 + 1
Ta có: 2B = 2101 – 2100 + 299 – 298 + … 23 – 22 + 2.
Khi đó 2B + B = (2101 – 2100 + 299 – 298 + … 23 – 22 + 2) + (2100 – 299 + 298 – 297 + … - 23 + 22 – 2 + 1) = 2101 + 1
3B = 2101 + 1
Suy ra: B = (2101 + 1):3.
Vậy B = (2101 + 1):3.