Không tính giá trị biểu thức, hãy giải thích tại sao mỗi biểu thức sau chia hết cho 9
Giải sách bài tập Toán lớp 6 Bài 9: Dấu hiệu chia hết cho 3, cho 9
Bài 81 trang 27 sách bài tập Toán lớp 6 Tập 1 - Cánh diều: Không tính giá trị biểu thức, hãy giải thích tại sao mỗi biểu thức sau chia hết cho 9:
a) P = 81 + 108 + 918;
b) M = 12.585 + 13.63 333 + 14. 378 225 + 18.5 142 312;
c) N = 11 + 22 + 33 + … + 99 + 2 021.60 021.
Lời giải:
a) Ta có: 8 + 1 = 9 chia hết cho 9 nên 81 chia hết cho 9;
Ta có: 1 + 0 + 8 = 9 chia hết cho 9 nên 108 chia hết cho 9;
Ta có: 9 + 1 + 8 = 18 chia hết cho 9 nên 918 chia hết cho 9;
Do đó: 81 + 108 + 918 chia hết cho 9.
Vậy P = 81 + 108 + 918 chia hết cho 9.
b) Ta có: 5 + 8 + 5 =18 chia hết cho 9 nên 585 chia hết cho 9. Do đó 12.585 chia hết cho 9.
Ta có: 6 + 3 + 3 + 3 + 3 = 18 chia hết cho 9 nên 63 333 chia hết cho 9. Do đó 13.63 333 chia hết cho 9.
Ta có: 3 + 7 + 8 + 2 + 2 + 5 = 27 chia hết cho 9 nên 378 225 chia hết cho 9. Do đó 14. 378 225 chia hết cho 9.
Ta có: 5 + 1 + 4 + 2 + 3 + 1 + 2 = 18 chia hết cho 9 nên 5 142 312 chia hết cho 9. Do đó 18.5 142 312 chia hết cho 9.
Vậy M = 12.585 + 13.63 333 + 14. 378 225 + 18.5 142 312 chia hết cho 9.
c) N = 11 + 22 + 33 + … + 99 + 2 021.60 021
= (11 + 88) + (22 + 77) + (33 + 66) + (44 + 55) + 99 + 2 021.60 021
= 99 + 99 + 99 + 99 + 99 + 2 021.60 021.
Ta có: 9 + 9 = 18 chia hết cho 9 nên 99 chia hết cho 9;
6 + 0 + 0 + 2 + 1 = 9 chia hết cho 9 nên 60 021 chia hết cho 9. Do đó 2 021.60 021 chia hết cho 9.
Suy ra 99 + 99 + 99 + 99 + 99 + 2 021.60 021 chia hết cho 9.
Vậy N = 11 + 22 + 33 + … + 99 + 2 021.60 021 chia hết cho 9.