Một hộp có chứa 10 quả cầu màu xanh được đánh số từ 1 đến 10 và 5 quả cầu
Một hộp có chứa 10 quả cầu màu xanh được đánh số từ 1 đến 10 và 5 quả cầu màu đỏ được đánh số từ 11 đến 15 . Lấy ngẫu nhiên một quả trong hộp. Tìm số phần tử của tập hợp E gồm các kết quả có thể xảy ra đối với quả cầu được chọn ra. Sau đó, tính xác suất của mỗi biến cố sau:
Giải SBT Toán 8 Bài 4: Xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản - Cánh diều
Bài 19 trang 25 SBT Toán 8 Tập 2: Một hộp có chứa 10 quả cầu màu xanh được đánh số từ 1 đến 10 và 5 quả cầu màu đỏ được đánh số từ 11 đến 15 . Lấy ngẫu nhiên một quả trong hộp. Tìm số phần tử của tập hợp E gồm các kết quả có thể xảy ra đối với quả cầu được chọn ra. Sau đó, tính xác suất của mỗi biến cố sau:
a) “Quả cầu được chọn ra màu xanh”;
b) “Quả cầu được chọn ra ghi số chẵn”;
c) “Quả cầu được chọn ra màu đỏ và ghi số chẵn”;
d) “Quả cầu được chọn ra màu xanh hoặc ghi số lẻ”.
Lời giải:
Tập hợp E gồm các kết quả có thể xảy ra đối với quả cầu được chọn ra là:
E = {1; 2; 3; ....; 15}.
Số phần tử của tập hợp E là 15 .
a) Các kết quả thuận lợi cho biến cố “Quả cầu được chọn ra màu xanh” là: 1; 2; 3; 4; 5; 6; 7; 8; 9; 10. Do đó, có 10 kết quả thuận lợi cho biến cố đó.
Vì vậy, xác suất của biến cố đó là .
b) Các kết quả thuận lợi cho biến cố “Quả cầu được chọn ra ghi số chẵn” là: 2; 4; 6; 8; 10; 12; 14. Do đó, có 7 kết quả thuận lợi cho biến cố đó.
Vì vậy, xác suất của biến cố đó là .
c) Các kết quả thuận lợi cho biến cố “Quả cầu được chọn ra màu đỏ và ghi số chẵn” là: 12; 14. Do đó, có 2 kết quả thuận lợi cho biến cố đó.
Vì vậy, xác suất của biến cố đó là .
d) Các kết quả thuận lợi cho biến cố “Quả cầu được chọn ra màu xanh hoặc ghi số lẻ” là: 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 13; 15. Do đó, có 13 kết quả thuận lợi cho biến cố đó.
Vì vậy, xác suất của biến cố đó là .
Lời giải SBT Toán 8 Bài 4: Xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản hay khác: