Bài 1 trang 85 Toán 9 Tập 2 Cánh diều


Cho ngũ giác ABCDE có các cạnh bằng nhau và Ngũ giác ABCDE có phải là ngũ giác đều hay không?

Giải Toán 9 Bài 1: Đa giác đều. Hình đa giác đều trong thực tiễn - Cánh diều

Bài 1 trang 85 Toán 9 Tập 2: Cho ngũ giác ABCDE có các cạnh bằng nhau và A^=B^=C^=108°. Ngũ giác ABCDE có phải là ngũ giác đều hay không?

Lời giải:

Bài 1 trang 85 Toán 9 Tập 2 Cánh diều | Giải Toán 9

⦁ Do ngũ giác ABCDE có các cạnh bằng nhau nên AB = BC = CD = DE = EA.

Xét ∆ABE có AB = AE nên ∆ABE cân tại A, suy ra ABE^=AEB^.

Lại có BAE^+ABE^+AEB^=180° (tổng ba góc của một tam giác)

Suy ra ABE^=AEB^=180°BAE^2=180°108°2=36°.

Chứng minh tương tự với ∆BCD ta cũng có CBD^=CDB^=36°.

Ta có: ABC^=ABE^+EBD^+DBC^

Suy ra EBD^=ABC^ABE^CBD^=108°36°36°=36°.

⦁ Xét ∆ABE và ∆CDB có:

AB = CD; BAE^=DCB^=108°, AE = CB

Do đó ∆ABE = ∆CDB (c.g.c)

Suy ra BE = BD (hai cạnh tương ứng)

Nên ∆BDE cân tại B, suy ra BED^=BDE^.

Lại có EBD^+BED^+BDE^=180°(tổng ba góc của một tam giác)

Suy ra BED^=BDE^=180°EBD^2=180°36°2=72°.

Khi đó: CDE^=CDB^+BDE^=36°+72°=108°

Và AED^=AEB^+BED^=36°+72°=108°.

Như vậy, EAB^=ABC^=BCD^=CDE^=DEA^=108°.

Vậy ngũ giác ABCDE có 5 cạnh bằng nhau và 5 góc bằng nhau nên ABCDE là ngũ giác đều.

Lời giải bài tập Toán 9 Bài 1: Đa giác đều. Hình đa giác đều trong thực tiễn hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác: