Bài 1 trang 66 Chuyên đề Toán 11 Chân trời sáng tạo


Giải Chuyên đề Toán 11 Bài 3: Bài toán tìm đường đi ngắn nhất - Chân trời sáng tạo

Bài 1 trang 66 Chuyên đề Toán 11: Cho đồ thị có trọng số như Hình 16.

Bài 1 trang 66 Chuyên đề học tập Toán 11 Chân trời sáng tạo

a) Tính độ dài các đường đi ABCD, MBNCP.

b) Chỉ ra ba đường đi khác nhau từ M đến N và tính độ dài của chúng.

c) MBC có phải là đường đi ngắn nhất từ M đến C không?

Lời giải:

a) Ta có:

⦁ lABCD = wAB + wBC + wCD = 5 + 15 + 4 = 24.

⦁ lMBNCP = wMB + wBN + wNC + wCP = 7 + 7 + 6 + 25 = 45.

Vậy độ dài các đường đi ABCD, MBNCP lần lượt là 24 và 45.

b) Ba đường đi khác nhau từ M đến N là: MAN, MBN, MABN.

Ta có:

⦁ lMAN = wMA + wAN = 5 + 9 = 14.

⦁ lMBN = wMB + wBN = 7 + 7 = 14.

⦁ lMABN = wMA + wAB + wBN = 5 + 5 + 7 = 17.

Vậy ba đường đi khác nhau từ M đến N là MAN, MBN, MABN có độ dài lần lượt bằng 14; 14; 17.

c) Ta có MANC là một đường đi từ M đến C.

Mà lMANC = wMA + wAN + wNC = 5 + 9 + 6 = 20 và lMBC = wMB + wBC = 7 + 15 = 22.

Vì 20 < 22 nên lMANC < lMBC.

Vậy MBC không phải là đường đi ngắn nhất từ M đến C.

Lời giải Chuyên đề Toán 11 Bài 3: Bài toán tìm đường đi ngắn nhất hay, chi tiết khác:

Xem thêm lời giải bài tập Chuyên đề học tập Toán 11 Chân trời sáng tạo hay, chi tiết khác: