Bài 2.13 trang 44 Chuyên đề Toán 12
Một công ty bán hàng toàn quốc đang lên kế hoạch tổ chức cuộc họp bán hàng tại Đà Nẵng. Giá vé máy bay khứ hồi thấp nhất từ Hà Nội đến Đà Nẵng là 2 triệu đồng và giá vé khứ hồi thấp nhất từ Thành phố Hồ Chí Minh đến Đà Nẵng là 2,4 triệu đồng. Có 28 đại diện bán hàng ở Hà Nội và 22 đại diện bán hàng ở Thành phố Hồ Chí Minh có thể đến Đà Nẵng dự cuộc họp này. Tổng cộng ít nhất 40 đại diện bán hàng từ Hà Nội và Thành phố Hồ Chí Minh phải tham dự cuộc họp này với ít nhất 12 người từ Hà Nội và 16 người từ Thành phố Hồ Chí Minh. Cần cử bao nhiêu đại diện bán hàng ở Hà Nội và bao nhiêu đại diện bán hàng ở Thành phố Hồ Chí Minh đến dự cuộc họp bán hàng ở Đà Nẵng để tổng chi phí vé máy bay là nhỏ nhất?
Giải Chuyên đề Toán 12 Bài tập cuối chuyên đề 2 - Kết nối tri thức
Bài 2.13 trang 44 Chuyên đề Toán 12: Một công ty bán hàng toàn quốc đang lên kế hoạch tổ chức cuộc họp bán hàng tại Đà Nẵng. Giá vé máy bay khứ hồi thấp nhất từ Hà Nội đến Đà Nẵng là 2 triệu đồng và giá vé khứ hồi thấp nhất từ Thành phố Hồ Chí Minh đến Đà Nẵng là 2,4 triệu đồng. Có 28 đại diện bán hàng ở Hà Nội và 22 đại diện bán hàng ở Thành phố Hồ Chí Minh có thể đến Đà Nẵng dự cuộc họp này. Tổng cộng ít nhất 40 đại diện bán hàng từ Hà Nội và Thành phố Hồ Chí Minh phải tham dự cuộc họp này với ít nhất 12 người từ Hà Nội và 16 người từ Thành phố Hồ Chí Minh. Cần cử bao nhiêu đại diện bán hàng ở Hà Nội và bao nhiêu đại diện bán hàng ở Thành phố Hồ Chí Minh đến dự cuộc họp bán hàng ở Đà Nẵng để tổng chi phí vé máy bay là nhỏ nhất?
Lời giải:
Gọi x và y lần lượt là số đại diện bán hàng ở Hà Nội và Thành phố Hồ Chí Minh được cử đến dự cuộc họp bán hàng ở Đà Nẵng.
Tổng chi phí vé máy bay là: 2x + 2,4x (nghìn đồng).
Hệ bất phương trình ràng buộc x và y là
Miền nghiệm của hệ bất phương trình này là miền tứ giác ABCD được tô màu như hình vẽ dưới đây với đường thẳng d: x + y = 40.
Các điểm cực biên là: A(18; 22), B(28; 22), C(28; 16), D(24; 16).
Bài toán yêu cầu tìm giá trị nhỏ nhất của F(x; y) trên miền nghiệm của hệ bất phương trình trên. Ta biết rằng, F(x; y) đạt giá trị nhỏ nhất tại một trong các đỉnh của tứ giác. Tính giá trị của F(x; y) tại các đỉnh của tứ giác ta được:
F(18; 22) = 2.18 + 2,4.22 = 88,8;
F(28; 22) = 2.28 + 2,4.22 = 108,8;
F(28; 16) = 2.28 + 2,4.16 = 94,4;
F(24; 16) = 2.24 + 2,4.16 = 86,4.
Giá trị nhỏ nhất của F(x; y) bằng 86,4 tại điểm cực biên B(24; 16). Phương án tối ưu là (24; 16).
Vậy cần cử 24 đại diện bán hàng ở Hà Nội và 16 đại diện bán hàng ở Thành phố Hồ Chí Minh đến dự cuộc họp bán hàng ở Đà Nẵng để tổng chi phí vé máy bay là nhỏ nhất.
Lời giải bài tập Chuyên đề Toán 12 Bài tập cuối chuyên đề 2 hay, chi tiết khác: