X

Giải sách bài tập Toán 12

Hình tứ diện đều ABCD có cạnh bằng a và có đường cao AH. Gọi O là trung điểm của AH


Bài 2: Mặt cầu

Bài 2.20 trang 61 Sách bài tập Hình học 12: Hình tứ diện đều ABCD có cạnh bằng a và có đường cao AH. Gọi O là trung điểm của AH. Xác định tâm và bán kính của mặt cầu ngoại tiếp tứ diện OBCD.

Lời giải:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi H trọng tâm của tam giác đều BCD.

Ta có AH ⊥ (BCD). Do đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt khác OC2 = OH2 + HC2

Giải sách bài tập Toán 12 | Giải sbt Toán 12

hay OC = OB = OD = (a√2)/2

Vì BD = BC = CD = a nên các tam giác DOB, BOC, COD là những tam giác vuông cân tại O. Do đó hình chóp ODBC là hình chóp có đáy là tam giác đều nên tâm của mặt cầu ngoại tiếp phải nằm trên OH, ngoài ra tâm của mặt cầu ngoại tiếp này phải nằm trên trục của tam giác vuông DOB. Từ trung điểm C’ của cạnh BD ta vẽ đường thẳng song song với OC cắt đường thẳng OH tại I. Ta có I là tâm mặt cầu ngoại tiếp tứ diện OBCD. Mặt cầu này có bán kính là IC và IC2 = IH2 + HC2.

Chú ý rằng IH = OH/2 (vì HC′ = HC/2)

Do đó:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xem thêm Các bài giải sách bài tập 12 khác: