Cho hình cầu đường kính AA’ = 2r. Gọi H là một điểm trên đoạn AA’ sao cho AH = 4r/3
Bài 2: Mặt cầu
Bài 2.23 trang 61 Sách bài tập Hình học 12: Cho hình cầu đường kính AA’ = 2r. Gọi H là một điểm trên đoạn AA’ sao cho AH = 4r/3. Mặt phẳng (α) qua H và vuông góc với AA’ cắt hình cầu theo đường tròn (C).
a) Tính diện tích của hình tròn (C) .
b) Gọi BCD là tam giác đều nội tiếp trong (C), hãy tính thể tích hình chóp A.BCD và hình chóp A’.BCD.
Lời giải:
a) Theo giả thiết ta có AH = 4r/3
Ta suy ra OH = r/3. Gọi r’ là bán kính của đường tròn (C).
Ta có:
Vậy diện tích của hình tròn (C) là:
b) Vì BCD là tam giác đều nên ta có:
Diện tích của tam giác đều BCD là:
Thể tích hình chóp A.BCD là:
Hai hình chóp A.BCD và A’.BCD có chung mặt đáy BCD nên:
Do đó