X

Giải sách bài tập Toán 12

Cho khối bát diện đều ABCDEF (h.1.9). Gọi O là giao điểm của AC và BD, M và N theo thứ tự là trung điểm


Bài 2: Khối đa diện lồi và khối đa diện đều

Bài 1.9 trang 12 Sách bài tập Hình học 12: Cho khối bát diện đều ABCDEF (h.1.9). Gọi O là giao điểm của AC và BD, M và N theo thứ tự là trung điểm của AB và AE. Tính diện tích thiết diện tạo bởi khối bát diện đó và mặt phẳng (OMN).

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có khối bát diện đều ABCDEF, cạnh a. Do MN // (DEBF) nên giao của mặt phẳng (OMN) với mặt phẳng (DEBF) là đường thẳng qua O và song song với MN.

Ta nhận thấy đường thẳng này cắt DE và BF tại các trung điểm P và S tương ứng của chúng. Do mặt phẳng (ADE) song song với mặt phẳng (BCF) nên (OMN) cắt (BCF) theo giao tuyến qua S và song song với NP. Dễ thấy giao tuyến này cắt FC tại trung điểm R của nó. Tương tự, (OMN) cắt DC tại trung điểm Q của nó. Từ đó suy ra thiết diện tạo bởi hình bát diện đã cho với mặt phẳng (OMN) là lục giác đều có cạnh bằng a/2.

Do đó diện tích của nó bằng Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xem thêm Các bài giải sách bài tập 12 khác: