Bài 12, 13, 14, 15 trang 8 SBT Toán 9 Tập 2
Bài 12, 13, 14, 15 trang 8 SBT Toán 9 Tập 2
Bài 12 trang 8 Sách bài tập Toán 9 Tập 2: Minh họa hình học tập nghiệm của mỗi hệ phương trình sau:
Lời giải:
a. *Ta có: 2x + 3y = 7 ⇔ y = -2/3x + 7/3
Cho x = 0 thì y = 7/3 ⇒ (0; 7/3 )
Cho y = 0 thì x = 7/2 ⇒ (7/2 ; 0)
*Ta có: x – y = 6 ⇔ y = x – 6
Cho x = 0 thì y = -6 ⇒ (0; -6)
Cho y = 0 thì x = 6 ⇒ (6; 0)
Hai đường thẳng cắt nhau tại M(5; -1) nên nghiệm của hệ phương trình là (x; y) = (5; -1)
Đồ thị: hình a.
b. *Ta có: 3x + 2y = 13 ⇔ y = -3/2x + 13/2
Cho x = 0 thì y = 13/2 ⇒ (0; 13/2 )
Cho y = 0 thì x = 13/3 ⇒ (13/3 ; 0)
*Ta có: 2x – y = -3 ⇔ y = 2x + 3
Cho x = 0 thì y = 3 ⇒ (0; 3)
Cho y = 0 thì x = - 3/2 ⇒ (- 3/2 ; 0)
Hai đường thẳng cắt nhau tại N(1; 5) nên nghiệm của hệ phương trình là (x; y) = (1; 5).
Đồ thị: hình b.
c. *Ta có: x + y = 1 ⇔ y = -x + 1
Cho x = 0 thì y = 1 ⇒ (0; 1)
Cho y = 0 thì x = 1 ⇒ (1; 0)
*Ta có: 3x + 0y = 12 ⇔ x = 4
Hai đường thẳng cắt nhau tại P(4; -3) nên nghiệm của hệ phương trình là (x; y) = (4; -3)
Đồ thị: hình c.
d. *Ta có: x + 2y = 6 ⇔ y = -1/2x + 3
Cho x = 0 thì y = 3 ⇒ (0; 3)
Cho y = 0 thì x = 6 ⇒ (6; 0)
*Ta có: 0x – 5y = 10 ⇔ y = -2
Hai đường thẳng cắt nhau tại Q(10; -2) nên nghiệm của hệ phương trình là (x; y) = (10; -2)
Đồ thị: hình d.
Bài 13 trang 8 Sách bài tập Toán 9 Tập 2: Cho hệ phương trình
a. Minh họa hình học tập nghiệm của hệ phương trình đã cho. Từ đó xác định nghiệm của hệ.
b. Nghiệm của hệ phương trình này có phải là nghiệm của phương trình 3x – 7y = 1 hay không?
Lời giải:
a. Ta có:
*Vẽ đường thẳng x = -2 song song với trục tung
*Vẽ đường thẳng y = 5x + 9
Cho x = 0 thì y = 9 ⇒ (0; 9)
Cho y = 0 thì x = - 9/5 = -1,8
Hai đường thẳng y = 5x + 9 và x = -2 cắt nhau tại A(-2; -1). Vậy hệ phương trình có một nghiệm duy nhất (x; y) = (-2; -1).
b. Thay x = -2, y = -1 vào phương trình 3x – 7y = 1, ta có:
3.(-2) – 7.(-1) = -6 + 7 = 1
Vậy x và y thỏa phương trình 3x – 7y = 1 nên (x; y) = (-2; -1) là nghiệm của phương trình 3x – 7y = 1.
Bài 14 trang 8 Sách bài tập Toán 9 Tập 2: Vẽ hai đường thẳng: (d1): x + y = 2 và (d2): 2x + 3y = 0.
Hỏi đường thẳng (d3): 3x + 2y = 10 có đi qua giao điểm của (d1) và (d2) hay không?
Lời giải:
Vẽ đường thẳng (d1) là đồ thị hàm số y = -x + 2
Cho x = 0 thì y = 2 ⇒ (0; 2)
Cho y = 0 thì x = 2 ⇒ (2; 0)
Vẽ đường thẳng (d2) là đồ thị hàm số y = -2/3x
Cho x = 0 thì y = 0 ⇒ (0; 0)
Cho x = 3 thì y = -2 ⇒ (3; -2)
Hai đường thẳng (d1) và (d2) cắt nhau tại A(6; -4). Thay các giá trị x và y này vào phương trình đường thẳng (d3), ta có:
3.6 + 2.(-4) = 18 – 8 = 10.
Vậy x và y thỏa phương trình 3x + 2y = 10 nên (x; y) = (6; -4) là nghiệm của phương trình 3x + 2y = 10.
bai-12-13-14-15-trang-8-sbt-toan-9-tap-2-8: Hỏi bốn đường thẳng sau có đồng quy không: (d1): 3x + 2y = 13, (d2): 2x + 3y = 7, (d3): x – y = 6, (d4): 5x – 0y = 25?
Lời giải:
Ta có: (d3): x – y = 6 ⇔ y = x – 6
(d4): 5x – 0y = 25 ⇔ x = 5
Vẽ đường thẳng (d3) là đồ thị hàm số y = x – 6
Cho x = 0 thì y = -6 ⇒ (0; -6)
Cho y = 0 thì x = 6 ⇒ (6; 0)
Vẽ đường thẳng (d4) là đường thẳng x = 5
Hai đường thẳng (d3) và (d4) cắt nhau tại I(5; -1). Lần lượt thay các giá trị x và y này vào phương trình đường thẳng (d1) và (d2), ta có:
(d1): 3.5 + 2.(-1) = 15 – 2 = 13
(d2): 2.5 + 3.(-1) = 10 – 3 = 7.
Vậy x và y thỏa mãn hai phương trình 3x + 2y = 13 và 2x + 3y = 7 nên (x; y) = (5; -1) là nghiệm của các phương trình trên. Hay là (d1) và (d2) đều đi qua I(5; -1).
Vậy bốn đường thẳng (d1): 3x + 2y = 13, (d2): 2x + 3y = 7, (d3): x – y = 6, (d4): 5x – 0y = 25 đồng quy.