Bài 24, 25, 26, 27, 28 trang 160 SBT Toán 9 Tập 1
Bài 24, 25, 26, 27, 28 trang 160 SBT Toán 9 Tập 1
Bài 24 trang 160 Sách bài tập Toán 9 Tập 1: Cho hình bên, trong đó MN = PQ. Chứng minh rằng:
a. AE = AF b. AN = AQ
Lời giải:
a. Nối OA
Ta có: MN = PQ (gt)
Suy ra: OE = OF (hai dây bằng nhau cách đều tâm)
Xét hai tam giác OAE và OAF, ta có:
∠(OEA) = ∠(OFA) = 90o
OA chung
OE = OF (chứng minh trên)
Suy ra: ΔOAE = ΔOAF (cạnh huyền, cạnh góc vuông)
Suy ra: AE = AF
b. Ta có: OE ⊥ MN (gt)
Suy ra EN = (1/2).MN (đường kính vuông góc với dây cung) (1)
OF ⊥ PQ (gt)
Suy ra FQ = (1/2).PQ (đường kính vuông góc với dây cung) (2)
Mặt khác: MN = PQ (gt) (3)
Từ (1), (2) và (3) suy ra: EN = FQ (4)
Mà AE = QF (chứng minh trên) (5)
Từ (4) và (5) suy ra: AN + NE = AQ + QF (6)
Từ (5) và (6) suy ra: AN = AQ
Bài 25 trang 160 Sách bài tập Toán 9 Tập 1: Cho hình bên, trong đó có hai dây CD, EF bằng nhau và vuông góc với nhau tại I, IC = 2cm, ID = 14cm. Tính khoảng cách từ O đến mỗi dây
Lời giải:
Kẻ OH ⊥ CD, OK ⊥ EF
Vì tứ giác OKIH có ba góc vuông nên nó là hình chữ nhật.
Ta có: CD = EF (gt)
Suy ra: OH = OK (hai dây bằng nhau cách đều tâm)
Suy ra tứ giác OKIH là hình vuông.
Ta có:
CD = CI + ID = 2 + 14 = 16(cm)
HC = HD = CD/2 = 8 (cm) (đường kính dây cung)
IH = HC - CI = 8 - 2 = 6 (cm)
Suy ra: OH = OK = 6 (cm) (OKIH là hình vuông)
Bài 26 trang 160 Sách bài tập Toán 9 Tập 1: Cho đường tròn (O), dây AB và dây CD, AB < CD. Giao điểm K của các đường thẳng AB, CD nằm ngoài đường tròn. Đường tròn (O; OK) cắt KA và KC tại M và N. Chứng minh rằng KM < KN.
Lời giải:
Kẻ OI ⊥ AB, OE ⊥ CD
Trong (O; OA) ta có: AB < CD (gt)
Suy ra : OI > OE (dây lớn hơn gần tâm hơn)
Trong (O ; OK) ta có : OI > OE (cmt)
Suy ra : KM < KN (dây gần tâm hơn thì lớn hơn)
Bài 27 trang 160 Sách bài tập Toán 9 Tập 1: Cho đường tròn (O) và điểm I nằm bên trong đường tròn. Chứng minh rằng dây AB vuông góc với IO tại I ngắn hơn mọi dây khác đi qua I.
Lời giải:
Gọi CD là dây bất kì đi qua I và CD không vuông góc với OI.
Kẻ OK ⊥ CD
Tam giác OKI vuông tại K nên OI > OK
Suy ra : AB < CD (dây lớn hơn gần tâm hơn)
Vậy dây AB vuông góc với IO tại I ngắn hơn mọi dây khác đi qua I.
Bài 28 trang 160 Sách bài tập Toán 9 Tập 1: Tam giác ABC nội tiếp đường tròn (O) có ∠A > ∠B > ∠C . Gọi OH, OI, OK theo thứ tự là khoảng cách từ O đến BC, AC, AB. So sánh các độ dài OH, OI, OK.
Lời giải:
Tam giác ABC có ∠A > ∠B > ∠C nên suy ra :
BC > AC > AB (cạnh đối diện góc lớn hơn thì lớn hơn)
Ta có AB, BC, AC lần lượt là các dây cung của đường tròn (O)
Mà BC > AC > AB nên suy ra:
OH < OI < OK (dây lớn hơn gần tâm hơn)