Sách bài tập Toán 10 trang 114 Chân trời sáng tạo
Haylamdo biên soạn và sưu tầm lời giải SBT Toán 10 trang 114 trong Bài 1: Số gần đúng và sai số. Với lời giải chi tiết nhất hy vọng sẽ giúp các bạn dễ dàng nắm được cách làm bài tập Sách bài tập Toán 10.
Giải SBT Toán 10 trang 114 Tập 1 Chân trời sáng tạo
Bài 8 trang 114 SBT Toán 10 Tập 1: Nam đo được đường kính của một hình tròn là 24 ± 0,2 cm. Nam tính được chu vi hình tròn là p = 75,36 cm. Hãy ước lượng sai số tuyệt đối của p, biết 3,141 < π < 3,142.
Lời giải:
Gọi và lần lượt là đường kính và chu vi của hình tròn.
Ta có = 24 ± 0,2 nên suy ra 24 – 0,2 ≤ ≤ 24 + 0,2.
Hay 23,8 ≤ ≤ 24,2.
Mà 3,141 < π < 3,142 nên suy ra:
23,8 . 3,141 ≤ . π ≤ 24,2 . 3,142
⇔ 74,7558 ≤ ≤ 76,0364.
Ta có: p = 75,36 là số gần đúng của nên sai số tuyệt đối của số gần đúng p là ∆p = | − 75,36|.
Mà 74,7558 ≤ ≤ 76,0364
⇔ 74,7558 − 75,36 ≤ − 75,36 ≤ 76,0364 − 75,36
⇔ −0,6042 ≤ − 75,36 ≤ 0,6764
⇒ | − 75,36| ≤ 0,6764.
Vậy sai số tuyệt đối của p là ∆p = | − 75,36| ≤ 0,6764.
Bài 9 trang 114 SBT Toán 10 Tập 1: Nhà sản xuất công bố chiều dài và chiều rộng của một tấm thép hình chữ nhật lần lượt là 100 ± 0,5 cm và 70 ± 0,5 cm. Hãy tính diện tích của tấm thép.
Lời giải:
Gọi và lần lượt là chiều dài và chiều rộng thực của tấm thép.
Ta có: = 100 ± 0,5 nên suy ra 99,5 ≤ ≤ 100,5.
Và = 70 ± 0,5 nên suy ra 69,5 ≤ ≤ 70,5.
Từ đó suy ra 99,5 . 69,5 ≤ . ≤ 100,5 . 70,5
⇔ 6915,25 ≤ . ≤ 7085,25.
Khi đó là diện tích thực của tấm thép.
Với a = 100 là số gần đúng của và b = 70 là số gần đúng của . Khi đó diện tích gần đúng s = a.b = 100.70 = 7000.
Ta có: s = 7000 là số gần đúng của nên sai số tuyệt đối của số gần đúng s là ∆s = | − 7000|.
Mà 6915,25 ≤ . = ≤ 7085,254
⇔ 6915,25 − 7000 ≤ − 7000 ≤ 7085,254 − 7000
⇔ −84,75 ≤ − 7000 ≤ 85,25
⇒ | − 7000| ≤ 85,25.
Vậy diện tích tấm thép là 7 000 ± 85,25 (cm2).