Sách bài tập Toán 10 trang 81 Chân trời sáng tạo
Haylamdo biên soạn và sưu tầm lời giải SBT Toán 10 trang 81 trong Bài tập cuối chương 4. Với lời giải chi tiết nhất hy vọng sẽ giúp các bạn dễ dàng nắm được cách làm bài tập Sách bài tập Toán 10.
- Bài 9 trang 81 SBT Toán lớp 10 Tập 1
- Bài 10 trang 81 SBT Toán lớp 10 Tập 1
- Bài 1 trang 81 SBT Toán lớp 10 Tập 1
- Bài 2 trang 81 SBT Toán lớp 10 Tập 1
- Bài 3 trang 81 SBT Toán lớp 10 Tập 1
- Bài 4 trang 81 SBT Toán lớp 10 Tập 1
- Bài 5 trang 81 SBT Toán lớp 10 Tập 1
- Bài 6 trang 81 SBT Toán lớp 10 Tập 1
- Bài 7 trang 81 SBT Toán lớp 10 Tập 1
Giải SBT Toán 10 trang 81 Tập 1 Chân trời sáng tạo
Bài 9 trang 81 SBT Toán 10 Tập 1: Tam giác ABC có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh CA lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng:
A. 2S;
B. 3S;
C. 4S;
D. 6S.
Lời giải:
Đáp án đúng là D
Diện tích tam giác ABC ban đầu là: S = . BC.AC.sinC
Diện tích tam giác ABC lúc sau là: Ss = .2BC.3AC.sinC = 6. . BC.AC.sinC = 6S.
Vậy đáp án đúng là D.
Bài 10 trang 81 SBT Toán 10 Tập 1: Cho = 30°. Gọi A và B là hai điểm di động lần lượt trên Ox và Oy sao cho AB = 1. Độ dài lớn nhất của đoạn OB bằng:
A. 1,5;
B. ;
C. ;
D. 2.
Lời giải:
Đáp án đúng là D
Theo định lí sin ta có:
OB = 2sin.
Ta có –1 ≤ sin ≤ 1 nên OB lớn nhất khi sin = 1 ⟺ = 90°.
Khi đó OB = 2.
Đáp án đúng là D.
Bài 1 trang 81 SBT Toán 10 Tập 1: Cho tam giác ABC với ba cạnh a, b, c. Chứng minh rằng: .
Lời giải:
Theo định lí côsin: a2 = b2 + c2 – 2bccosA
⇒ cosA =
⇒ = .
Tương tự ta có:
= và =
Như vậy: = + +
⇒ . ( ĐPCM ).
Bài 2 trang 81 SBT Toán 10 Tập 1: Cho tam giác ABC. Biết a = 24; b = 36; = 52°. Tính cạnh c và hai góc , .
Lời giải:
Áp dụng định lí côsin ta có:
c2 = a2 + b2 – 2abcos
c2 = 242 + 362 – 2.24.36.cos52°
c =
c ≈ 28,43.
Áp dụng định lí sin ta có:
=
⇒ sinA = a : = 24 : ≈ 0,665 ⇒ ≈ 41°40’56’’.
⇒ sinB = b : = 36 : ≈ 0,998 ⇒ ≈ 86°22’32’’.
Vậy ≈ 41°40’56’’ và ≈ 86°22’32’’.
Bài 3 trang 81 SBT Toán 10 Tập 1: Hai chiếc tàu thủy P và Q cách nhau 50 m. Từ P và Q thẳng hàng với chân A của tháp hải đăng AB ở trên bờ biển, người ta nhìn chiều cao AB của tháp dưới các góc = 40° và = 52°. Tính chiều cao của tháp hải đăng đó.
Lời giải:
Ta có hình vẽ sau:
Ta có: = 40°, = 52°, = 90°, PQ = 50 m.
là góc kề bù với ⇒ = 180° – 52° = 128°
Xét tam giác PBQ: + + = 180°
⇒ = 180° – 128° – 40° = 12°.
Áp dụng định lí sin cho tam giác PBQ ta có:
= ⇒ BQ = . sinP = .sin40° ≈ 154,58 m.
Xét tam giác ABQ vuông tại A: AB = BQ. sin52° = 154,58. sin52° ≈ 121,81 m.
Vậy chiều cao của tháp hải đăng khoảng 121,81 m.
Bài 4 trang 81 SBT Toán 10 Tập 1: Cho tam giác ABC có = 99°, b = 6, c = 10. Tính:
a) Diện tích tam giác ABC;
b) Bán kính đường tròn ngoại tiếp và bán kính đường tròn nội tiếp tam giác ABC.
Lời giải:
a) Diện tích tam giác ABC là:
S = .b.c.sin= .6.10.sin99° ≈ 29,63 (đvdt).
Vậy diện tích tam giác ABC là 29,63 đvdt.
b) Áp dụng định lí côsin ta có:
a2 = b2 + c2 – 2bccosA
a2 = 62 + 102 – 2.6.10.cos99°
a =
a ≈ 12,44.
Áp dụng định lí sin ta có:
⇒ R = = ≈ 6,30.
Nửa chu vi tam giác ABC là:
p = = 14,22.
Lại có: r = = ≈ 2,08.
Vậy bán kính đường tròn ngoại tiếp tam giác ABC là 6,30 và bán kính đường tròn nội tiếp tam giác ABC là 2,08.
Bài 5 trang 81 SBT Toán 10 Tập 1: Hai máy bay rời một sân bay cùng một lúc. Một chiếc máy bay với vận tốc 800 km/h theo hướng lệch so với hướng bắc 15° về phía tây. Chiếc còn lại bay theo hướng lệch so với hướng nam 45° về phía tây với vận tốc 600 km/h ( Hình 1). Hỏi hai máy bay đó cách nhau bao xa sau 3 giờ?
Lời giải:
Ta có hình vẽ sau:
Ta có: = 180° – 15° – 45° = 120°.
Sau 3 giờ hai máy bay bay từ O đến A đi được quãng đường là: 800.3 = 2400 km.
Hay OA = 2 400.
Sau 3 giờ hai máy bay bay từ O đến B đi được quãng đường là: 600.3 = 1 800 km.
Hay OB = 1 800.
Sau 3 giờ, hai máy bay A, B và điểm xuất phát O tạo thành tam giác OAB với OA = 2400 và OB = 1800. Áp dụng định lí côsin cho tam giác OAB ta được:
AB2 = OA2 + OB2 – 2.OA.OB.cos
AB2 = 24002 + 18002 – 2.1800.2400.cos120°
AB =
AB ≈ 3650 km
Vậy sau 3 giờ hai máy bay cách nhau khoảng 3650 km.
Bài 6 trang 81 SBT Toán 10 Tập 1: Cho tam giác ABC không vuông. Chứng minh rằng:
.
Lời giải:
Theo định lí côsin ta có: a2 = b2 + c2 – 2bcosA
⇒ cosA =
Tương tự: cosB =
Theo định lí côsin ta có:
⇒ sinA = và sinB =
Ta có:
= ... = (ĐPCM).
Bài 7 trang 81 SBT Toán 10 Tập 1: Một tháp viễn thông cao 42 m được dựng thẳng đứng trên một sườn dốc 34° so với phương ngang. Từ đỉnh tháp người ta neo một sợi cáp xuống một điểm trên sườn dốc cách chân tháp 33 m như Hình 2. Tính chiều dài của sợi dây cáp đó.
Lời giải:
Ta biểu diễn lại hình như trên. AB là độ dài sợi dây cáp. AC là độ dài tháp. Như vậy AC = 42 m, BC = 33 m, = 34°, = 90°.
Xét tam giác MCH: = 180°.
⇒ = 180° – 90° – 34° = 56°.
` và là hai góc đối đỉnh nên = 56° ( tính chất hai góc đối đỉnh).
Áp dụng định lí côsin cho tam giác ABC:
AB2 = AC2 + BC2 – 2.AC.BC.cos
AB2 = 422 + 332 – 2.42.33.cos56°
AB =
AB ≈ 36,1 m
Vậy chiều dài sợi dây cáp khoảng 36,1 m.