Giải SBT Toán 10 trang 18 Tập 1 Kết nối tri thức
Với Giải SBT Toán 10 trang 18 Tập 1 trong Bài 3: Bất phương trình bậc nhất hai ẩn Sách bài tập Toán 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 18.
Giải SBT Toán 10 trang 18 Tập 1 Kết nối tri thức
Bài 2.1 trang 18 sách bài tập Toán lớp 10 Tập 1: Cho bất phương trình bậc nhất hai ẩn -3x + y < 4.
a) Biểu diễn miền nghiệm của bất phương trình đã cho trên mặt phẳng tọa độ.
b) Từ đó suy ra miền nghiệm của bất phương trình -3x + y ≤ 4 và miền nghiệm của bất phương trình -3x + y ≥ 4.
Lời giải:
a) Biểu diễn miền nghiệm của bất phương trình -3x + y < 4 trên mặt phẳng tọa độ.
Bước 1. Vẽ đường thẳng d: -3x + y = 4 trên mặt phẳng tọa độ Oxy như sau:
• Xác định hai điểm thuộc đường thẳng d: -3x + y = 4.
Ta có bảng sau:
Do đó đồ thị của đường thẳng d: -3x + y = 4 đi qua các điểm có tọa độ (0; 4) và (1; 7).
• Xác định 2 điểm đó trên hệ trục tọa độ Oxy và kẻ đường thẳng đi qua 2 điểm đó, ta thu được đường thẳng d: -3x + y = 4.
Bước 2. Ta chọn O(0; 0) là điểm không thuộc đường thẳng d: -3x + y = 4 và thay vào biểu thức -3x + y, ta có -3 . 0 + 0 = 0 < 4.
Do đó miền nghiệm của bất phương trình -3x + y < 4 là nửa mặt phẳng bờ d chứa gốc tọa độ và bỏ đi đường thẳng d (miền không được gạch).
b) Khi đó miền nghiệm của bất phương trình -3x + y ≤ 4 là nửa mặt phẳng bờ d chứa gốc tọa độ (miền không được gạch).
Miền nghiệm của bất phương trình -3x + y ≥ 4 là nửa mặt phẳng bờ d không chứa gốc tọa độ (miền được gạch).
Bài 2.2 trang 18 sách bài tập Toán lớp 10 Tập 1: Cho bất phương trình 2x + 3y + 3 ≤ 5x + 2y + 3.
Bằng cách chuyển vế, hãy đưa bất phương trình trên về dạng tổng quát của bất phương trình bậc nhất hai ẩn. Biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn đó trên mặt phẳng tọa độ.
Lời giải:
Ta có 2x + 3y + 3 ≤ 5x + 2y + 3
2x + 3y + 3 - 5x - 2y - 3 ≤ 0.
-3x + y ≤ 0.
Biểu diễn miền nghiệm của bất phương trình -3x + y ≤ 0 trên mặt phẳng tọa độ:
Bước 1. Vẽ đường thẳng d: -3x + y = 0 theo các bước sau:
• Xác định hai điểm thuộc đường thẳng d: -3x + y = 0.
Do đó đường thẳng d: -3x + y = 0 đi qua hai điểm có tọa độ (0; 0) và (1; 3).
• Xác định hai điểm đó trên hệ trục tọa độ Oxy, kẻ đường thẳng đi qua 2 điểm đó ta thu được đường thẳng d: -3x + y = 0.
Bước 2. Ta chọn điểm (0; 1) là điểm không thuộc đường thẳng d: -3x + y = 0 và thay vào biểu thức -3x + y ta có -3 . 0 + 1 = 1 > 0.
Do đó miền nghiệm của bất phương trình -3x + y ≤ 0 là nửa mặt phẳng bờ d không chứa điểm (0; 1) (miền không được gạch).
Bài 2.3 trang 18 sách bài tập Toán lớp 10 Tập 1: Xác định một bất phương trình bậc nhất hai ẩn nhận nửa mặt phẳng bờ là đường thẳng d (miền không bị gạch) làm miền nghiệm (H.2.3).
Lời giải:
Ta thấy đường thẳng d đi qua hai điểm (0; -2) và (4; 0).
Gọi phương trình đường thẳng d: y = ax + b (a ≠ 0).
Thay x = 0; y = -2 vào đường thẳng d ta có:
-2 = a . 0 + b
b = -2.
Thay x = 4; y = 0 vào đường thẳng d ta có:
0 = 4 . a + (-2)
2 = 4 . a
a = =
Do đó phương trình đường thẳng d: y = x - 2
2y = x - 4
x - 2y = 4.
Chọn điểm O(0; 0) là điểm không thuộc đường thẳng d và thay vào biểu thức x - 2y ta được: 0 - 2 . 0 = 0 < 4.
Do đó bất phương trình nhận nửa mặt phẳng bờ là đường thẳng d (miền không bị gạch) làm miền nghiệm là x - 2y ≤ 4.
Lời giải Sách bài tập Toán 10 Kết nối tri thức Bài 3: Bất phương trình bậc nhất hai ẩn Kết nối tri thức hay khác: