Cho khối tứ diện đều ABCD cạnh a. Tính: Khoảng cách giữa hai đường thẳng AB và CD
Cho khối tứ diện đều ABCD cạnh a. Tính:
Giải sách bài tập Toán 11 Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối
Bài 54 trang 117 SBT Toán 11 Tập 2: Cho khối tứ diện đều ABCD cạnh a. Tính:
a) Khoảng cách giữa hai đường thẳng AB và CD;
b) Chiều cao và thể tích của khối tứ diện đều ABCD;
c) Côsin của góc giữa đường thẳng AB và mặt phẳng (BCD);
d) Côsin của số đo góc nhị diện [C, AB, D].
Lời giải:
a) Do ABCD là tứ diện đều cạnh nên các tam giác ABC, ABD, ACD, BCD là các tam giác đều cạnh a.
Gọi M, N lần lượt là trung điểm của AB và CD nên
Xét tam giác ABC đều có CM là đường trung tuyến (do M là trung điểm AB).
Suy ra CM là đường cao của tam giác ABC hay CM ⊥ AB.
Chứng minh tương tự đối với các tam giác ABD, BCD, ACD đều ta có: DM ⊥ AB, BN ⊥ CD, AN ⊥ CD.
· Ta có: AB ⊥ CM, AB ⊥ DM, CM ∩ DM = M trong (CDM)
Suy ra AB ⊥ (CDM).
Mà MN ⊂ (CDM) nên AB ⊥ MN.
· Ta có: CD ⊥ BN, CD ⊥ AN, BN ∩ AN = N trong (ABN)
Suy ra CD ⊥ (ABN).
Mà MN ⊂ (ABN) nên CD ⊥ MN.
Ta có: AB ⊥ MN, CD ⊥ MN.
Suy ra MN là đoạn vuông góc chung của hai đường thẳng AB và CD.
Như vậy: d(AB, CD) = MN.
Áp dụng định lí Pythagore trong tam giác BCM vuông tại M có:
MC2 = BC2 – BM2
Áp dụng định lí Pythagore trong tam giác CMN vuông tại N có:
CM2 = MN2 + CN2
Vậy
b) Gọi H là hình chiếu của A trên (BCD) hay AH ⊥ (BCD).
Do ABCD là tứ diện đều, nên H là tâm đường tròn ngoại tiếp của tam giác BCD.
Vì tam giác BCD đều nên H cũng là trọng tâm của tam giác BCD.
Mà BN là đường trung tuyến của tam giác BCD (do N là trung điểm của CD)
Suy ra: H ∈ BN và
Ta có: AH ⊥ (BCD), BH ⊂ (BCD) nên AH ⊥ BH.
Áp dụng định lí Pythagore trong tam giác BCN vuông tại N có:
BC2 = BN2 + CN2
Suy ra
Từ đó ta có
· Áp dụng định lí Pythagore trong tam giác ABH vuông tại H (do AH ⊥ BH) có:
AB2 = AH2 + BH2
Suy ra
· Diện tích tam giác BCD là:
(đvdt).
· Thể tích của khối tứ diện ABCD có đường cao và diện tích đáy là:
(đvtt).
c) Do H là hình chiếu của A trên (BCD) nên góc giữa đường thẳng AB và mặt phẳng (BCD) bằng góc giữa hai đường thẳng AB và BH và bằng
Xét tam giác ABH vuông tại H có:
Vậy côsin của góc giữa đường thẳng AB và mặt phẳng (BCD) là
d) Theo câu a ta có: CM ⊥ AB, DM ⊥ AB, CM ∩ DM = M ∈ AB.
Nên là góc phẳng nhị diện của góc nhị diện [C, AB, D].
Xét tam giác CMD, theo hệ quả định lí Côsin ta có:
Vậy côsin của số đo góc nhị diện [C, AB, D] bằng
Lời giải SBT Toán 11 Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối hay khác: