Một số học sinh nắm tay nhau xếp thành vòng tròn lớn tham gia hoạt động tập thể
Giải sách bài tập Toán lớp 6 Bài 12: Ước chung và ước chung lớn nhất
Bài 118 trang 34 sách bài tập Toán lớp 6 Tập 1 - Cánh diều: Một số học sinh nắm tay nhau xếp thành vòng tròn lớn tham gia hoạt động tập thể. Thầy An đi quanh vòng tròn và gắn cho học sinh một số thứ tự 1; 2; 3; 4; 5; … (Hình 4) và nhận thấy học sinh được gắn số 12 đối diện với học sinh được gắn số 30. Thầy tách các học sinh được gắn số từ 1 đến 12 vào nhóm 1 và từ 30 đến số cuối cùng vào nhóm 2. Thầy muốn chia các học sinh của mỗi nhóm vào các câu lạc bộ (số câu lạc bộ nhiều hơn 1) sao cho số học sinh ở từng nhóm của mỗi câu lạc bộ là như nhau.
a) Thầy An có bao nhiêu cách để chia học sinh vào các câu lạc bộ.
b) Số câu lạc bộ nhiều nhất mà thầy An có thể chia là bao nhiêu.
Lời giải:
a) Ta có học sinh được gắn số 12 đứng đối diện với học sinh được gắn số 30 nên đường thẳng nối hai số này sẽ chia số bạn trên vòng tròn thành hai phần bằng nhau. Do đó số học sinh tham gia hoạt động tập thể là: (30 – 12).2 = 36 (học sinh).
Vì thầy An tách các học sinh được gắn số từ 1 đến 12 vào nhóm 1 và từ 30 đến số cuối cùng vào nhóm 2 nên nhóm 1 có 12 học sinh, nhóm 2 có 24 học sinh.
Để chia 12 học sinh nhóm 1 và 24 học sinh nhóm 2 vào các câu lạc bộ ( số câu lạc bộ nhiều hơn 1). Số học sinh của từng nhóm của câu lạc bộ là như nhau nên số câu lạc bộ là ước chung của 12 và 24.
Ta có: 12 = 22.3, 24 = 23.3.
ƯCLN(12, 24) = 22.3 = 12.
ƯC(12, 24) = .
Vì số câu lạc bộ phải lớn hơn 1 nên có thể chia học sinh vào 2 câu lạc bộ, 3 câu lạc bộ, 4 câu lạc bộ và 12 câu lạc bộ.
Vậy có 5 cách chia học sinh vào các câu lạc bộ.
b) Để số câu lạc bộ nhiều nhất thì số câu lạc bộ phải là ước chung lớn nhất của 12 và 24. Khi đó có thể chia thành nhiều nhất 12 câu lạc bộ.