a) Điền “Đ” (đúng), “S”(sai) vào các ô trống cho mỗi kết luận trong bảng sau
Giải sách bài tập Toán lớp 6 Bài 10. Số nguyên tố. Hợp số. Phân tích một số ra thừa một số nguyên tố
Bài 4 trang 29 sách bài tập Toán lớp 6 Tập 1 - Chân trời sáng tạo:
a) Điền “Đ” (đúng), “S”(sai) vào các ô trống cho mỗi kết luận trong bảng sau:
Kết luận |
Đáp số |
i. Mỗi số chẵn lớn hơn 2 đều là hợp số. |
|
ii. Tổng của hai số nguyên tố lớn hơn 2 luôn là một hợp số |
|
iii. Tổng của hai hợp số luôn là một hợp số. |
|
iv. Tích của hai số nguyên tố có thể là một số chẵn |
|
b) Với mỗi kết luận sai trong câu a, hãy cho ví dụ minh hoạ.
Lời giải:
a) - Tất cả mọi số chẵn lớn hơn 2 đều là hợp số. Do đó i) đúng.
- Mọi số nguyên tố lớn hơn 2 đều là các số lẻ. Mà tổng hai số lẻ này là một số chẵn lớn hơn 2 nên tổng hai số nguyên tố lớn hơn 2 này chia hết cho 2. Do đó chúng có nhiều hơn hai ước và là một hợp số. Suy ra ii) là đúng.
- Hai hợp số là 25 và 12 có tổng là 25 + 12 = 37 là một số nguyên tố. Do đó iii) là sai.
- Vì có một số nguyên tố chẵn duy nhất là 2 nên tích của số 2 với bất kì số nguyên tố nào khác đều là số chẵn. Chẳng hạn như tích của 2 và của 17 là 2.17 = 34 là một số chẵn. Do đó iv) đúng.
Ta có bảng sau:
Kết luận |
Đáp số |
i. Mỗi số chẵn lớn hơn 2 đều là hợp số. |
Đ |
ii. Tổng của hai số nguyên tố lớn hơn 2 luôn là một hợp số |
Đ |
iii. Tổng của hai hợp số luôn là một hợp số. |
S |
iv. Tích của hai số nguyên tố có thể là một số chẵn |
Đ |
b) Ví dụ minh họa:
Hai hợp số là 25 và 12 có tổng là 25 + 12 = 37 là một số nguyên tố. Do đó iii) là sai.