X

Giải SBT Toán 7 Cánh diều

Hai đoạn thẳng BE và CD vuông góc với nhau tại A sao cho AB = AD, AC = AE, AB > AC


Hai đoạn thẳng BE và CD vuông góc với nhau tại A sao cho AB = AD, AC = AE, AB > AC. Trong các phát biểu sau, phát biểu nào ? Vì sao?

Giải sách bài tập Toán lớp 7 Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh - góc - cạnh

Bài 31 trang 77 sách bài tập Toán lớp 7 Tập 2: Hai đoạn thẳng BE và CD vuông góc với nhau tại A sao cho AB = AD, AC = AE, AB > AC. Trong các phát biểu sau, phát biểu nào sai? Vì sao?

a) ΔAED = ΔACB.

b)DE = BC.

c) ΔACE = ΔABD.

d) ABC^=AED^ .

Lời giải:

Hai đoạn thẳng BE và CD vuông góc với nhau tại A sao cho AB = AD, AC = AE, AB > AC

Xét ΔAED và ΔACB có:

DAE^=BAC^ (cùng bằng 90°),

AD = AB (giả thiết),

AE = AC (giả thiết)

Do đó ΔAED = ΔACB (hai cạnh góc vuông) nên phát biểu a đúng.

Từ ΔAED = ΔACB, suy ra:

• DE = BC (hai cạnh tương ứng), nên phát biểu b đúng.

ABC^=ADE^(hai góc tương ứng) nên phát biểu d sai.

Xét ΔACE và ΔABD, ta thấy hai tam giác này không có các cạnh bằng nhau, các góc bằng nhau. Do đó hai tam giác này không bằng nhau, nên phát biểu c sai.

Vậy phát biểu c, d là phát biểu sai.

Xem thêm các bài giải sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác: