X

Giải SBT Toán 7 Cánh diều

Cho tam giác ABC cân tại A. Đường trung trực của đoạn thẳng AC cắt cạnh AB tại D


Cho tam giác ABC cân tại A. Đường trung trực của đoạn thẳng AC cắt cạnh AB tại D. Biết CD là tia phân giác của góc ACB. Tính số đo mỗi góc của tam giác ABC.

Giải sách bài tập Toán lớp 7 Bài 9: Đường trung trực của một đoạn thẳng

Bài 67 trang 88 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC cân tại A. Đường trung trực của đoạn thẳng AC cắt cạnh AB tại D. Biết CD là tia phân giác của góc ACB. Tính số đo mỗi góc của tam giác ABC.

Lời giải:

Cho tam giác ABC cân tại A. Đường trung trực của đoạn thẳng AC cắt cạnh AB tại D

Đường trung trực của AC cắt AB tại D nên DA = DC.

Do đó tam giác ADC cân tại D.

Suy ra A^=C^1

Vì CD là tia phân giác của góc C nên C^1=C^2=12ACB^

Suy ra A^=C^1=C^2=12ACB^

Hay ACB^=2A^

Vì tam giác cân ABC nên B^=ACB^ (hai góc ở đáy).

Do đó B^=ACB^=2A^.

A^+B^+ACB^=180° (tổng ba góc của tam giác ABC).

Suy ra A^+2A^+2A^=180° hay 5A^=180°

Nên A^=36°

Khi đó B^=ACB^=2.36°=72°

Vậy ∆ABC có B^=C^=72°,A^=36°.

Xem thêm các bài giải sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác: