X

Giải SBT Toán 7 Cánh diều

Giải SBT Toán 7 trang 55 Tập 2 Cánh diều


Haylamdo biên soạn và sưu tầm lời giải sách bài tập Toán 7 trang 55 Tập 2 trong Bài tập cuối chương 6 SBT Toán 7 Tập 2 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 trang 55.

Giải SBT Toán 7 trang 55 Tập 2 Cánh diều

Bài 50 trang 55 sách bài tập Toán lớp 7 Tập 2: Giá trị của biểu thức (x2 – 8)(x + 3) – (x – 2)(x + 5) tại x = 3 là:

A. – 2

B. 16

C. – 10

D. 10

Lời giải:

Đáp án đúng là: A

Thay x = 3 vào biểu thức (x2 – 8)(x + 3) – (x – 2)(x + 5) ta được:

(32 – 8)(3 + 3) – (3 – 2)(3 + 5) = 1 . 6 – 1 . 8 = –2.

Vậy ta chọn phương án A.

Bài 51 trang 55 sách bài tập Toán lớp 7 Tập 2: Biểu thức nào sau đây là đa thức một biến? Tìm biến và bậc của đa thức đó.

a) – 2 022x;

b) – 6x2 – 4x + 2;

c) 3un – 8u2 – 20 (n ∈ ℕ, n > 2);

d) 1x+x32x2+1.

Lời giải:

a) Biểu thức –2 022x là một đa thức một biến x.

Đa thức này có bậc là 1.

b) Biểu thức – 6x2 – 4x + 2 là một đa thức một biến x.

Đa thức này có bậc là 2.

c) Biểu thức 3un – 8u2 – 20 (n ∈ ℕ, n > 2) là một đa thức một biến u.

Đa thức này có bậc là n với n ∈ ℕ, n > 2.

d) Biểu thức 1x+x32x2+1 không phải là một đa thức một biến x.

Bài 52 trang 55 sách bài tập Toán lớp 7 Tập 2: Tính giá trị của biểu thức:

a) A = 56 – 5a + 6b tại a = 22, b = 23;

b) B = 6xyz – 3xy – 19z tại x = 11, y = 32, z = 0;

c) C = x2021y – 2 022x2 + 2 023y3 + 7 tại x = –1 và y = 1;

d) D = x4 – 17x3 + 17x2 – 17x + 21 tại x = 16.

Lời giải:

a) Thay a = 22, b = 23 vào A = 56 – 5a + 6b ta có:

A = 56 – 5 . 22 + 6 . 23 = 56 – 110 + 138 = 84.

Vậy tại a = 22, b = 23 thì biểu thức A có giá trị bằng 84.

b) Thay x = 11, y = 32, z = 0 vào B = 6xyz – 3xy – 19z ta có:

B = 6 . 11 . 32 . 0 – 3 . 11 . 32 – 19 . 0

= 0 – 1 056 – 0 = –1 056.

Vậy tại x = 11, y = 32, z = 0 thì biểu thức B có giá trị bằng –1 056.

c) Thay x = –1 và y = 1 vào C = x2021y – 2 022x2 + 2 023y3 + 7 ta có:

C = (–1)2021 . 1 – 2 022 . (–1)2 + 2 023 . 13 + 7

= –1 – 2 022 + 2023 + 7 = 7.

Vậy tại x = –1 và y = 1 thì biểu thức C có giá trị bằng 7.

d) Với x = 16 ta có x + 1 = 17.

Khi đó ta có:

D = x4 – 17x3 + 17x2 – 17x + 21

= x4 – (x + 1) . x3 + (x + 1) . x2 – (x + 1) . x + 21

= x4 – x4 – x3 + x3 + x2 – x2 – x + 21

= – x + 21

Thay x = 16 vào D = – x + 21 ta có:

D = – 16 + 21 = 5.

Vậy tại x = 16 thì biểu thức D có giá trị bằng 5.

Bài 53 trang 55 sách bài tập Toán lớp 7 Tập 2: Một bể đang chứa 500 l nước. Người ta mở một vòi nước cho chảy vào bể đó, mỗi phút vòi nước đó chảy vào bể được 50 l nước. Viết biểu thức biểu thị lượng nước có trong bể sau khi đã mở vòi nước đó được x phút, biết rằng sau x phút bể nước đó chưa đầy.

Lời giải:

Mỗi phút vòi nước đó chảy vào bể được 50 l nước thì sau x phút vòi nước đó chảy vào bể được 50x (l nước).

Bể đang chứa 500 l nước, chảy thêm được 50x (l nước) thì sau x phút, lượng nước trong bể có là 500 + 50x (l nước).

Bài 54 trang 55 sách bài tập Toán lớp 7 Tập 2: Viết đa thức biến x trong mỗi trường hợp sau:

a) Đa thức bậc nhất có hệ số của biến bằng – 7 và hệ số tự do bằng 0.

b) Đa thức bậc ba có hệ số của lũy thừa bậc hai và bậc nhất của biến đều bằng 5.

c) Đa thức bậc bốn có tổng hệ số của lũy thừa bậc ba và bậc hai của biến bằng 6 và hệ số tự do bằng – 1.

d) Đa thức bậc tám trong đó tất cả các hệ số của lũy thừa bậc lẻ của biến đều bằng 0.

Lời giải:

a) Gọi đa thức bậc nhất biến x cần tìm có dạng ax + b (a ≠ 0).

Đa thức trên có:

• Hệ số của biến bằng – 7 nên a = – 7.

• Hệ số tự do bằng 0 nên b = 0.

Vậy đa thức biến x cần tìm là –7x.

b) Gọi đa thức bậc ba biến x cần tìm có dạng ax3 + bx2 + cx + d (a ≠ 0).

Đa thức trên có:

• Hệ số của lũy thừa bậc hai bằng 5 nên b = 5;

• Hệ số của lũy thừa bậc nhấ bằng 5 nên c = 5;

Vậy đa thức biến x cần tìm là ax3 + 5x2 + 5x + d (a ≠ 0).

c) Gọi đa thức bậc bốn biến x cần tìm có dạng ax4 + bx3 + cx2 + dx + e (a ≠ 0).

Đa thức trên có:

• Tổng hệ số của lũy thừa bậc ba và bậc hai của biến bằng 6 nên b + c = 6.

Do đó c = 6 – b.

• Hệ số tự do bằng – 1 nên e = – 1.

Vậy đa thức biến x cần tìm là ax4 + bx3 + (6 – b)x2 + dx – 1 (a ≠ 0).

d) Đa thức bậc tám biến x trong đó tất cả các hệ số của lũy thừa bậc lẻ của biến đều bằng 0 là: ax8 + bx6 + cx4 + dx2 + e (a ≠ 0).

Bài 55 trang 55 sách bài tập Toán lớp 7 Tập 2: Tìm giá trị của m để đa thức sau là đa thức bậc ba theo biến x:

P(x) = (m2 – 25)x4 + (20 + 4m)x3 +17x2 – 23.

Lời giải:

Đa thức P(x) là đa thức bậc ba khi và chỉ khi:

m2 – 25 = 0 (1) và 20 + 4m ≠ 0 (2)

• Giải (2):

20 + 4m ≠ 0

4m ≠ –20

m ≠ –5

• Giải (1):

m2 – 25 = 0

m2 = 25

m2 = 52 = (–5)2

m = 5 (thỏa mãn m ≠ –5) hoặc m = –5 (không thỏa mãn m ≠ –5).

Vậy với m = 5 thì đa thức P(x) đã cho là đa thức bậc ba.

Bài 56 trang 55 sách bài tập Toán lớp 7 Tập 2: Cho đa thức A(x) = – 11x5 + 4x3 – 12x2 + 11x5 + 13x2 – 7x + 2.

a) Thu gọn và sắp xếp đa thức A(x) theo số mũ giảm dần của biến.

b) Tìm bậc của đa thức A(x).

c) Tính giá trị của đa thức A(x) tại x = –1; x = 0; x = 2.

Lời giải:

a) A(x) = – 11x5 + 4x3 – 12x2 + 11x5 + 13x2 – 7x + 2.

= (– 11x5 + 11x5) + 4x3 + (– 12x2 + 13x2) – 7x + 2.

= 4x3 + x2 – 7x + 2.

Vậy A(x) = 4x3 + x2 – 7x + 2.

b) Đa thức A(x) = 4x3 + x2 – 7x + 2 có bậc là 3 do số mũ lớn nhất của biến x là 3.

c) Xét đa thức A(x) = 4x3 + x2 – 7x + 2.

• Tại x = –1 ta có:

A(–1) = 4 . (–1)3 + (–1)2 – 7 . (–1) + 2

= –4 + 1 + 7 + 2 = 6.

• Tại x = 0 ta có:

A(0) = 4 . 03 + 02 – 7 . 0 + 2

= 0 + 0 – 0 + 2 = 2.

• Tại x = 2 ta có:

A(2) = 4 . 23 + 22 – 7 . 2 + 2

= 32 + 4 – 14 + 2 = 24.

Vậy A(–1) = 6; A(0) = 2 và A(2) = 24.

Lời giải Sách bài tập Toán lớp 7 Bài tập cuối chương 6 Cánh diều hay khác:

Xem thêm lời giải Sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác: