Cho góc xOy Lấy hai điểm A, B thuộc tia Ox sao cho OA nhỏ hơn OB
Giải sách bài tập Toán lớp 7 Bài 2: Tam giác bằng nhau
Bài 9 trang 46 sách bài tập Toán lớp 7 Tập 2: Cho góc xOy. Lấy hai điểm A, B thuộc tia Ox sao cho OA < OB. Lấy hai điểm C, D thuộc tia Oy sao cho OA = OC, OB = OD. Gọi M là giao điểm của AD và CB. Chứng minh rằng:
a) AD = CB;
b) ΔMAB = ΔMCD.
Lời giải:
a) Xét ∆AOD và ∆COB có:
OA = OC (giả thiết),
là góc chung,
OD = OB (giả thiết).
Do đó ΔAOD = ΔCOB (c.g.c).
Suy ra AD = CB (hai cạnh tương ứng).
Vậy AD = CB.
b) Ta có OB = OA + AB (do OA < OB) nên AB = OB – OA.
Tương tự OD = OC + CD nên CD = OD – OC.
Mà OA = OC, OB = OD (giả thiết).
Suy ra AB = CD.
Vì ΔAOD = ΔCOB (chứng minh câu a).
Nên (các cặp góc tương ứng) (1)
Ta có (hai góc kề bù)
Suy ra (2)
Ta có (hai góc kề bù)
Hay (3)
Từ (1),(2),(3) suy ra .
Xét ΔMAB và ΔMCD có
(do ),
AB = CD (chứng minh trên),
(do ).
Do đó ΔMAB = ΔMCD (g.c.g).
Vậy ΔMAB = ΔMCD.