X

SBT Toán 9 Kết nối tri thức

Cho tam giác ABC vuông tại A, AH là đường cao. Chứng minh rằng


Cho tam giác ABC vuông tại A, AH là đường cao. Chứng minh rằng

Haylamdo biên soạn và sưu tầm lời giải sách bài tập Toán 9 Bài 12: Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng - Kết nối tri thức

Bài 4.20 trang 49 sách bài tập Toán 9 Tập 1: Cho tam giác ABC vuông tại A, AH là đường cao. Chứng minh rằng 1AH2=1AB2+1AC2

 (HD. Ta có sin B = AHAB, sin C = AHAC, cos B = sin C và áp dụng công thức sin2 α + cos2 α = 1 với mọi góc nhọn α).

Lời giải:

Cho tam giác ABC vuông tại A, AH là đường cao. Chứng minh rằng

Xét tam giác ABH vuông tại H, ta có: tanABH^=AHBH

Xét tam giác ACH vuông tại H ta có: tanACH^=AHHC

ABH^ACH^ là hai góc phụ nhau (tam giác ABC vuông tại A) nên:

tanABH^=cotACH^=1tanACH^ hay AHBH=HCAH

Suy ra AH2 = BH . CH (đpcm).

Lời giải SBT Toán 9 Bài 12: Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng hay khác:

Xem thêm giải sách bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác: