X

SBT Toán 9 Kết nối tri thức

Cho A, B là hai địa điểm ở hai bên bờ sông, biết AN và PM cùng vuông góc MN, MN = n (mét), MP = p (mét), p lớn hơn n


Cho A, B là hai địa điểm ở hai bên bờ sông, biết AN và PM cùng vuông góc MN, MN = n (mét), MP = p (mét), p > n và (H.4.12). Chứng minh rằng: .

Haylamdo biên soạn và sưu tầm lời giải sách bài tập Toán 9 Bài 12: Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng - Kết nối tri thức

Bài 4.23 trang 49 sách bài tập Toán 9 Tập 1: Cho A, B là hai địa điểm ở hai bên bờ sông, biết AN và PM cùng vuông góc MN, MN = n (mét), MP = p (mét), p > n và MPA^=α (H.4.12). Chứng minh rằng: AB=ptanαnsinα.

Cho A, B là hai địa điểm ở hai bên bờ sông, biết AN và PM cùng vuông góc MN, MN = n (mét), MP = p (mét), p lớn hơn n

Lời giải:

Vì AN và PM cùng vuông góc với MN nên AN // PM.

Vì AN // PM nên BAN^=BPM^=α

+ Xét tam giác BAN vuông tại N ta có:

BN=ABsinBAN^=AB.sinα

+ Xét tam giác BPM vuông tại M ta có:

BM=PM.tanBPM^=p.tanα

Ta có: BM – BN = MN

p . tan α – AB . sinα = n

AB . sinα = p . tanα – n

AB=p.tanαnsinα (đpcm).

Lời giải SBT Toán 9 Bài 12: Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng hay khác:

Xem thêm giải sách bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác: