Một nhà hát có 25 hàng ghế với 16 ghế ở hàng thứ nhất, 18 ghế ở hàng thứ hai, 20 ghế ở hàng thứ 3 và cứ tiếp tục theo quy luật đó, tức là hàng sau nhiều hơn hàng liền trước nó 2 ghế. Tính tổn
Câu hỏi:
Một nhà hát có 25 hàng ghế với 16 ghế ở hàng thứ nhất, 18 ghế ở hàng thứ hai, 20 ghế ở hàng thứ 3 và cứ tiếp tục theo quy luật đó, tức là hàng sau nhiều hơn hàng liền trước nó 2 ghế. Tính tổng số ghế của nhà hát đó.
Trả lời:
Lời giải:
Sau bài học này ta sẽ giải quyết được bài toán trên như sau:
Số ghế ở mỗi hàng của nhà hát lập thành một cấp số cộng, gồm 25 số hạng, với số hạng đầu u1 = 16 và công sai d = 2. Tổng các số hạng này là
S25 = u1 + u2 + ... + u25 = \(\frac{{25}}{2}\left[ {2{u_1} + \left( {25 - 1} \right)d} \right] = \frac{{25}}{2}\left[ {2.16 + 24.2} \right] = 1\,000\).
Vậy nhà hát đó có tổng cộng 1 000 ghế.
Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:
Câu 1:
Cho dãy số (un) gồm tất cả các số tự nhiên lẻ, xếp theo thứ tự tăng dần.
a) Viết năm số hạng đầu của dãy số.
b) Dự đoán công thức biểu diễn số hạng un theo số hạng un – 1.
Xem lời giải »
Câu 2:
Dãy số không đổi a, a, a, ... có phải là một cấp số cộng không?
Xem lời giải »
Câu 3:
Cho dãy số (un) với un = – 2n + 3. Chứng minh rằng (un) là một cấp số cộng. Xác định số hạng đầu và công sai của cấp số cộng này.
Xem lời giải »
Câu 4:
Cho cấp số cộng (un) với số hạng đầu u1 và công sai d.
a) Tính các số hạng u2, u3, u4, u5 theo u1 và d.
b) Dự đoán công thức tính số hạng tổng quát un theo u1 và d.
Xem lời giải »