Nếu hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì hai mặt phẳng đó có song song với nhau hay không? Vì sao?
Câu hỏi:
Nếu hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì hai mặt phẳng đó có song song với nhau hay không? Vì sao?
Trả lời:
Lời giải:
Hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì hai mặt phẳng đó song song với nhau.
Chứng minh: Cho ba mặt phẳng (α), (β), (γ) phân biệt có (α) // (β), (β) // (γ). Ta chứng minh (α) // (γ).
Trên mặt phẳng (α) ta có hai đường thẳng cắt nhau a1 và b1. Vì (α) // (β) suy ra a1 // (β); b1 // (β).
Trên mp(β), kẻ a2 // a1, b2 // b1. Vì a1 và b1 cắt nhau suy ra a2 và b2 cũng cắt nhau, (β) // (γ) nên a2 // (γ), b2 // (γ)
Trên mp (γ), kẻ a3 // a2, b3 // b2. Vì a2 và b2 cắt nhau suy ra a3 và b3 cắt nhau
Ta có: a3 // a1 (vì cùng song song với a2), suy ra a3 // (α)
b3 // b1 (vì cùng song song với b2), suy ra b3 // (α)
Do đó (γ) // (α).
Vậy nếu hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì hai mặt phẳng đó có song song với nhau.
Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:
Câu 1:
Các đầu bếp chuyên nghiệp luôn có kĩ năng dùng dao điêu luyện để thái thức ăn như rau, củ, thịt, cá,... thành các miếng đều nhau và đẹp mắt. Các nhát cắt cần tuân thủ nguyên tắc gì để đạt được điều đó?
Xem lời giải »
Câu 2:
Các mặt bậc thang trong Hình 4.40 gợi nên hình ảnh về các mặt phẳng không có điểm chung. Hãy tìm thêm một số ví dụ khác cũng gợi nên hình ảnh đó.
Xem lời giải »
Câu 3:
Trong hình ảnh mở đầu, các nhát cắt có nằm trong các mặt phẳng song song hay không?
Xem lời giải »
Câu 4:
Cho mặt phẳng (α) chứa hai đường thẳng cắt nhau a, b và a, b cùng song song với mặt phẳng (β) (H.4.41).
Nếu (α) và (β) cắt nhau theo giao tuyến c thì hai đường thẳng a và c có song song với nhau hay không, hai đường thẳng b và c có song song với nhau hay không?
Xem lời giải »
Câu 5:
Cho hình chóp S.ABCD. Gọi M, N, P, Q lần lượt là các điểm thuộc cạnh SA, SB, SC, SD sao cho \[\frac{{MA}}{{MS}} = \frac{{NB}}{{NS}} = \frac{{PC}}{{PS}} = \frac{{QD}}{{QS}} = \frac{1}{2}\]. Chứng minh rằng bốn điểm M, N, P, Q đồng phẳng.
Xem lời giải »
Câu 6:
Cho hình chóp S.ABCD. Gọi M, N, P, Q lần lượt là các điểm thuộc cạnh SA, SB, SC, SD sao cho \[\frac{{MA}}{{MS}} = \frac{{NB}}{{NS}} = \frac{{PC}}{{PS}} = \frac{{QD}}{{QS}} = \frac{1}{2}\]. Chứng minh rằng bốn điểm M, N, P, Q đồng phẳng.
Xem lời giải »
Câu 7:
Cho hai mặt phẳng song song (P) và (Q). Giả sử mặt phẳng (R) cắt mặt phẳng (P) theo giao tuyến a (H.4.46).
a) Giải thích vì sao mặt phẳng (R) cắt mặt phẳng (Q).
b) Gọi b là giao tuyến của hai mặt phẳng (R) và (Q). Hai đường thẳng a và b có thể chéo nhau hay không, có thể cắt nhau hay không?
Xem lời giải »
Câu 8:
Trong Ví dụ 3, hãy xác định giao tuyến của mặt phẳng (EMQ) và mặt phẳng (ABCD).
Xem lời giải »