Trong các dãy số cho bởi công thức truy hồi sau, dãy số nào là cấp số nhân? A. u1 = – 1, un + 1 = un^2. B. u1 = – 1, un + 1 = 2un. C. u1 = – 1, un + 1 = un + 2. D. u1 = – 1, un + 1 = u­n


Câu hỏi:

Trong các dãy số cho bởi công thức truy hồi sau, dãy số nào là cấp số nhân?

A. u1 = – 1, \({u_{n + 1}} = u_n^2\).

B. u1 = – 1, un + 1 = 2un.

C. u1 = – 1, un + 1 = un + 2.

D. u1 = – 1, un + 1 = u­n – 2.

Trả lời:

Lời giải:

Đáp án đúng là: B

Nhận xét thấy dãy số cho bởi công thức truy hồi u1 = – 1, un + 1 = 2un có \(\frac{{{u_{n + 1}}}}{{{u_n}}} = 2\) với mọi n ≥ 1. Do đó, dãy số này là một cấp số nhân với số hạng đầu u1 = – 1 và công bội q = 2. 

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Khẳng định nào sau đây là sai?

A. Một dãy số tăng thì bị chặn dưới.

B. Một dãy số giảm thì bị chặn trên.

C. Một dãy số bị chặn thì phải tăng hoặc giảm.

D. Một dãy số không đổi thì bị chặn.

Xem lời giải »


Câu 2:

Cho dãy số

1, \(\frac{1}{2},\,\frac{1}{4},\,\frac{1}{8},\,\,...\) (số hạng sau bằng một nửa số hạng liền trước nó).

Công thức tổng quát của dãy số đã cho là

A. \({u_n} = {\left( {\frac{1}{2}} \right)^n}\).

B. \({u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{{{2^{n - 1}}}}\).

C. \({u_n} = \frac{1}{{2n}}\).

D. \({u_n} = {\left( {\frac{1}{2}} \right)^{n - 1}}\).

Xem lời giải »


Câu 3:

Cho dãy số (un) với un = 3n + 6. Khẳng định nào sau đây là đúng?

A. Dãy số (un) là cấp số cộng với công sai d = 3.

B. Dãy số (un) là cấp số cộng với công sai d = 6.

C. Dãy số (un) là cấp số nhân với công bội q = 3.

D. Dãy số (un) là cấp số nhân với công bội q = 6.

Xem lời giải »


Câu 4:

Tổng 100 số hạng đầu của dãy số (un) với u­n = 2n – 1 là

A. 199.

B. 2100 – 1.

C. 10 000.

D. 9 999. 

Xem lời giải »


Câu 5:

Từ 0 giờ đến 12 giờ trưa, chuông của một chiếc đồng hồ quả lắc sẽ đánh bao nhiêu tiếng, biết rằng nó chỉ đánh chuông báo giờ và số tiếng chuông bằng số giờ?

Xem lời giải »


Câu 6:

Tế bào E. Coli trong điều kiện nuôi cấy thích hợp cứ 20 phút lại phân đôi một lần. Hỏi sau 24 giờ, tế bào ban đầu sẽ phân chia thành bao nhiêu tế bào?

Xem lời giải »


Câu 7:

Chứng minh rằng:

a) Trong một cấp số cộng (un), mỗi số hạng (trừ số hạng đầu và số hạng cuối, nếu có) đều là trung bình cộng của hai số hạng đứng kề với nó, nghĩa là

\({u_k} = \frac{{{u_{k - 1}} + {u_{k + 1}}}}{2}\) với k ≥ 2.

b) Trong một cấp số nhân, bình phương của mỗi số hạng (trừ số hạng đầu và số hạng cuối, nếu có) đều là tích của hai số hạng đứng kề với nó, nghĩa là

\(u_k^2 = {u_{k - 1}}.{u_{k + 1}}\) với k ≥ 2.

Xem lời giải »