Cho tam giác MBC vuông tại M có góc B =60 độ. Gọi A là điểm nằm trên tia đối của tia MB sao cho MA = MB
Cho tam giác MBC vuông tại M có Gọi A là điểm nằm trên tia đối của tia MB sao cho MA = MB. Chứng minh rằng tam giác ABC là tam giác đều.
Giải Vở thực hành Toán 7 Luyện tập chung trang 76, 77, 78
Bài 4 (4.32) trang 77 vở thực hành Toán lớp 7 Tập 1: Cho tam giác MBC vuông tại M có Gọi A là điểm nằm trên tia đối của tia MB sao cho MA = MB. Chứng minh rằng tam giác ABC là tam giác đều.
Lời giải:
Ta thấy hai tam giác MBC và MAC vuông tại M và có:
MB = MA (theo giả thiết);
MC là cạnh chung.
Vậy ∆MBC = ∆MAC (hai cạnh góc vuông). Do đó .
Suy ra .
Vậy ABC là tam giác có ba góc bằng nhau nên đây là tam giác đều.