X

Vở thực hành Toán 8

Cho tứ giác ABCD, gọi E, F, K lần lượt là trung điểm của AD


Giải vở thực hành Toán 8 Luyện tập chung trang 77, 78, 79 - Kết nối tri thức

Bài 2 trang 78 vở thực hành Toán 8 Tập 1: Cho tứ giác ABCD, gọi E, F, K lần lượt là trung điểm của AD, BC, AC.

a) Chứng minh EK // CD, FK // AB.

b) So sánh EF và 12AB+CD.

Lời giải:

Cho tứ giác ABCD, gọi E, F, K lần lượt là trung điểm của AD

a) ∆ABC có F là trung điểm BC, K là trung điểm AC nên FK là đường trung bình của ∆ABC, suy ra FK // AB.

∆ACD có E là trung điểm AD nên EK đường trung bình của ∆ACD, suy ra EK // CD.

b) FK là đường trung bình của ∆ABC nên AB = 2FK.

Tương tự CD = 2EK.

Ta có FK + KE ≥ FE nên 12AB+CD. ≥ EF.

Do đó EF ≤ 12AB+CD.

Lời giải vở thực hành Toán 8 Luyện tập chung trang 77, 78, 79 hay khác:

Xem thêm các bài giải vở thực hành Toán lớp 8 Kết nối tri thức hay, chi tiết khác: