Bài 6.2, 6.3 trang 165 SBT Toán 8 tập 1


Bài 6.2, 6.3 trang 165 SBT Toán 8 tập 1

Bài 6.2 trang 165 SBT Toán 8 Tập 1: Cho hình bình hành ABCD, với diện tích S và AB = a, AD = b. Lấy mỗi cạnh của hình bình hành đó làm cạnh dựng một hình vuông ra phía ngoài hình bình hành. Tính theo a, b và S diện tích của đa giác giới hạn bởi các cạnh của hình vuông mà không là cạnh của hình bình hành đã cho.

Lời giải:

Bài 6.2, 6.3 trang 165 SBT Toán 8 tập 1 | Giải sách bài tập Toán lớp 8

Hình đa giác đó gồm hình bình hành ABCD, hình vuông ABMN, BHGC, CFED, DKJA.

SABMN = SCDEF = a2

SBHGC = SDKJA = b2

Diện tích đa giác bằng :

SABMN = SCDEF = a2

SBHGC = SDKJA = b2

Bài 6.3 trang 165 SBT Toán 8 Tập 1: Bạn Giang đã vẽ một đa giác ABCDEFGHI như ở hình bs. 26.

Tính diện tích của đa giác đó, biết rằng : KH song song với BC (K thuộc EF); BC song song với GF; CF song song với BG; BG vuông góc với GF; CK song song với DE; CD song song với FE; KE = DE và KE vuông góc với DE; I là trung điểm của BH, AI = IH và AI vuông góc với IH; HK = 11cm, CF = 6cm. HK cắt CF tại J và JK = 3 (cm), JF = 2cm. BG cắt HK tại M và HM = 2cm.

Lời giải:

Bài 6.2, 6.3 trang 165 SBT Toán 8 tập 1 | Giải sách bài tập Toán lớp 8

Chia đa giác đó thành hình vuông CDEK, hình thang KFGH, hình thang BCKH và tam giác vuông AIB

Ta có: MJ = KH – KJ – MH = 11 – 2 – 3 = 6(cm)

⇒ BC = GF = MJ = 6 (cm)

CJ = CF – FG = 6 – 2 = 4 (cm)

SKFGH = (HK + GF)/2. FJ = (11 + 6)/2.2 = 17 (cm2)

SBCKH = (BC + KH)/2. FJ = (11 + 6)/2.4 = 34 (cm2)

Trong tam giác vuông BMH có ∠J = 90o .Theo định lý Pi-ta-go ta có:

CK2= CJ2 + JK2 = 16 + 9 = 25 ⇒ CK = 5 (cm)

SCDEK = CK2 = 52 = 25 (cm2)

Trong tam giác vuông BMH có ∠M = 90o .Theo định lý Pi-ta-go ta có:

BH2= BM2 + HM2

mà BM = CJ = 4(cm) (đường cao hình thang BCKH)

⇒ BH2 = 42 + 22 = 20

IB = BH/2 ⇒ IB2= BH2/2 = 20/4 = 5

IB = √5 (cm)

ΔAIB vuông cân tại I (vì AI = IH = IB)

SAIB = 1/2 AI. IB = 1/2 IB2 = 5/2 (cm2)

S = SCDEK + SKFGH + SBCKH + SAIB = 25 + 17 + 34 + 5/2 = 157/2 (cm2)

Xem thêm các bài Giải sách bài tập Toán 8 khác: