X

Giải sách bài tập Toán 9

Bài 5, 6, 7, 8, 9, 10, 11 trang 6 SBT Toán 9 Tập 1


Bài 5, 6, 7, 8, 9, 10, 11 trang 6 SBT Toán 9 Tập 1

Bài 5 trang 6 Sách bài tập Toán 9 Tập 1: So sánh (không dùng bảng số hay máy tính bỏ túi)

a. 2 và √2 + 1     b. 1 và √3 – 1

c. 2√31 và 10    d. -√3.11 và -12

Lời giải:

a. Ta có: 1 < 2 ⇒ √1 < √2 ⇒ 1 < √2

Suy ra: 1 + 1 < √2 + 1

Vậy 2 < √2 + 1

b. Ta có: 4 > 3 ⇒ √4 > √3 ⇒ 2 > √3

Suy ra: 2 – 1 > √3 – 1

Vậy 1 > √3 – 1

c. Ta có: 31 > 25 ⇒ √31 > √25 ⇒ √31 > 5

Suy ra: 2.√31 > 2.5

Vậy 2.√31 > 10

d. Ta có: 11 < 16 ⇒ √11 < √16 ⇒ √11 < 4

Suy ra: -3.√11 > -3.4

Vậy -3√11 > -12

Bài 6 trang 6 Sách bài tập Toán 9 Tập 1: Tìm những khẳng định đúng trong các khẳng định sau:

a. Căn bậc hai của 0,36 là 0,6

b. Căn bậc hai của 0,36 là 0,06

c. √0,36 = 0,6

d. Căn bậc hai của 0,36 là 0,6 và -0,6

e. √0,36 = ± 0,6

Lời giải:

Câu a và c đúng.

Bài 7 trang 6 Sách bài tập Toán 9 Tập 1: Trong các số Bài 5, 6, 7, 8, 9, 10, 11 trang 6 SBT Toán 9 Tập 1 | Giải sách bài tập Toán lớp 9 , số nào là căn bậc hai số học của 25?

Lời giải:

Căn bậc hai số học của 25 là Bài 5, 6, 7, 8, 9, 10, 11 trang 6 SBT Toán 9 Tập 1 | Giải sách bài tập Toán lớp 9

Bài 8 trang 6 Sách bài tập Toán 9 Tập 1: Chứng minh: Bài 5, 6, 7, 8, 9, 10, 11 trang 6 SBT Toán 9 Tập 1 | Giải sách bài tập Toán lớp 9

Viết tiếp một số đẳng thức tương tự.

Bài 5, 6, 7, 8, 9, 10, 11 trang 6 SBT Toán 9 Tập 1 | Giải sách bài tập Toán lớp 9

Lời giải:

Bài 5, 6, 7, 8, 9, 10, 11 trang 6 SBT Toán 9 Tập 1 | Giải sách bài tập Toán lớp 9

Bài 9 trang 6 Sách bài tập Toán 9 Tập 1: Cho hai số a, b không âm. Chứng minh:

a. Nếu √a < √b thì a < b

b. Nếu a < b thì √a < √b

Lời giải:

a. a ≥ 0; b ≥ 0 và a < b ⇒ b > 0

Ta có: √a ≥ 0; √b ≥ 0 suy ra: √a + √b > 0 (1)

Mặt khác: a – b = (√a )2 – (√b )2 = (√a + √b )(√a - √b )

Vì a < b nên a – b < 0

Suy ra: (√a + √b )(√a - √b ) < 0 (2)

Từ (1) và (2) suy ra: √a - √b < 0 ⇒ √a < √b

b. a ≥ 0; b ≥ 0 và √a < √b ⇒ √b > 0

Suy ra: √a + √b > 0 và √a - √b < 0

(√a + √b )(√a - √b ) < 0

⇒ (√a )2 – (√b )2 < 0 ⇒ a – b < 0 ⇒ a < b

Bài 10 trang 6 Sách bài tập Toán 9 Tập 1: Cho số m dương. Chứng minh:

a. Nếu m > 1 thì √m > 1    b. Nếu m < 1 thì √m < 1

Lời giải:

a. Ta có: m > 1 ⇒ √m > √1 ⇒ √m > 1

b. Ta có: m < 1 ⇒ √m < √1 ⇒ √m < 1

Bài 11 trang 6 Sách bài tập Toán 9 Tập 1: Cho số m dương. Chứng minh:

a. Nếu m > 1 thì m > √m     b. Nếu m < 1 thì m < √m

Lời giải:

a. Ta có: m > 1 ⇒ √m > √1 ⇒ √m > 1

Vì m > 0 nên √m > 0

Suy ra: √m .√m > 1.√m ⇒ m > √m

b. Ta có: m < 1 ⇒ √m < √1 ⇒ √m < 1

Vì m > 0 nên √m > 0

Suy ra: √m .√m < 1.√m ⇒ m < √m

Xem thêm các bài Giải sách bài tập Toán 9 khác: