Bài 5, 6, 7, 8, 9, 10, 11 trang 6 SBT Toán 9 Tập 1
Bài 5, 6, 7, 8, 9, 10, 11 trang 6 SBT Toán 9 Tập 1
Bài 5 trang 6 Sách bài tập Toán 9 Tập 1: So sánh (không dùng bảng số hay máy tính bỏ túi)
a. 2 và √2 + 1 b. 1 và √3 – 1
c. 2√31 và 10 d. -√3.11 và -12
Lời giải:
a. Ta có: 1 < 2 ⇒ √1 < √2 ⇒ 1 < √2
Suy ra: 1 + 1 < √2 + 1
Vậy 2 < √2 + 1
b. Ta có: 4 > 3 ⇒ √4 > √3 ⇒ 2 > √3
Suy ra: 2 – 1 > √3 – 1
Vậy 1 > √3 – 1
c. Ta có: 31 > 25 ⇒ √31 > √25 ⇒ √31 > 5
Suy ra: 2.√31 > 2.5
Vậy 2.√31 > 10
d. Ta có: 11 < 16 ⇒ √11 < √16 ⇒ √11 < 4
Suy ra: -3.√11 > -3.4
Vậy -3√11 > -12
Bài 6 trang 6 Sách bài tập Toán 9 Tập 1: Tìm những khẳng định đúng trong các khẳng định sau:
a. Căn bậc hai của 0,36 là 0,6
b. Căn bậc hai của 0,36 là 0,06
c. √0,36 = 0,6
d. Căn bậc hai của 0,36 là 0,6 và -0,6
e. √0,36 = ± 0,6
Lời giải:
Câu a và c đúng.
Bài 7 trang 6 Sách bài tập Toán 9 Tập 1: Trong các số , số nào là căn bậc hai số học của 25?
Lời giải:
Căn bậc hai số học của 25 là
Bài 8 trang 6 Sách bài tập Toán 9 Tập 1: Chứng minh:
Viết tiếp một số đẳng thức tương tự.
Lời giải:
Bài 9 trang 6 Sách bài tập Toán 9 Tập 1: Cho hai số a, b không âm. Chứng minh:
a. Nếu √a < √b thì a < b
b. Nếu a < b thì √a < √b
Lời giải:
a. a ≥ 0; b ≥ 0 và a < b ⇒ b > 0
Ta có: √a ≥ 0; √b ≥ 0 suy ra: √a + √b > 0 (1)
Mặt khác: a – b = (√a )2 – (√b )2 = (√a + √b )(√a - √b )
Vì a < b nên a – b < 0
Suy ra: (√a + √b )(√a - √b ) < 0 (2)
Từ (1) và (2) suy ra: √a - √b < 0 ⇒ √a < √b
b. a ≥ 0; b ≥ 0 và √a < √b ⇒ √b > 0
Suy ra: √a + √b > 0 và √a - √b < 0
(√a + √b )(√a - √b ) < 0
⇒ (√a )2 – (√b )2 < 0 ⇒ a – b < 0 ⇒ a < b
Bài 10 trang 6 Sách bài tập Toán 9 Tập 1: Cho số m dương. Chứng minh:
a. Nếu m > 1 thì √m > 1 b. Nếu m < 1 thì √m < 1
Lời giải:
a. Ta có: m > 1 ⇒ √m > √1 ⇒ √m > 1
b. Ta có: m < 1 ⇒ √m < √1 ⇒ √m < 1
Bài 11 trang 6 Sách bài tập Toán 9 Tập 1: Cho số m dương. Chứng minh:
a. Nếu m > 1 thì m > √m b. Nếu m < 1 thì m < √m
Lời giải:
a. Ta có: m > 1 ⇒ √m > √1 ⇒ √m > 1
Vì m > 0 nên √m > 0
Suy ra: √m .√m > 1.√m ⇒ m > √m
b. Ta có: m < 1 ⇒ √m < √1 ⇒ √m < 1
Vì m > 0 nên √m > 0
Suy ra: √m .√m < 1.√m ⇒ m < √m