Từ bộ tú lơ khơ có 52 quân bài thường đang được úp, rút ngẫu nhiên đồng thời 4 quân bài
Từ bộ tú lơ khơ có 52 quân bài thường đang được úp, rút ngẫu nhiên đồng thời 4 quân bài. Tính xác suất các biến cố sau:
Giải sách bài tập Toán 10 Bài 5: Xác suất của biến cố
Bài 35 trang 48 SBT Toán 10 Tập 2: Từ bộ tú lơ khơ có 52 quân bài thường đang được úp, rút ngẫu nhiên đồng thời 4 quân bài. Tính xác suất các biến cố sau:
a) A: “Rút được 4 quân bài cùng một giá trị” (ví dụ 4 quân 3, 4 quân K,…);
b) B: “Rút được 4 quân bài có cùng chất”;
c) C: “Trong 4 quân bài rút được chỉ có 2 quân Át”.
Lời giải:
Rút ngẫu nhiên đồng thời 4 quân bài trong 52 quân bài là một tổ hợp chập 4 của 52 phần tử.
Do đó số phần tử của không gian mẫu là: n(Ω) = = 270725.
a) Trong bộ 52 quân bài có 13 nhóm 4 quân bài cùng một giá trị.
Suy ra số phần tử của biến cố A là: n(A) = 13.
Vậy xác suất của biến cố A là: .
b) Có 4 cách chọn chất của bộ bài (Cơ, Rô, Chuồn, Bích).
Mà mỗi chất có 13 quân bài.
Do đó mỗi cách chọn 4 quân bài trong số 13 quân bài của mỗi chất là một tổ hợp chập 4 của 13.
Suy ra số phần tử của biến cố B là: n(B) = 4. = 2860.
Vậy xác suất của biến cố B là: P(B)=.
c) Trong bộ bài có tổng cộng 4 quân Át.
Mỗi cách chọn 2 quân Át trong số 4 quân Át là một tổ hợp chập 2 của 4 phần tử.
Mỗi cách chọn 2 quân bài còn lại không phải quân Át trong số 48 quân bài còn lại là một tổ hợp chập 2 của 48.
Do đó số phần tử của biến cố C là: n(C) = = 6768.
Vậy xác suất của biến cố C là: P(C) = .