Cho tam giác ABC không vuông, với trực tâm H, nội tiếp đường tròn
Cho tam giác ABC không vuông, với trực tâm H, nội tiếp đường tròn (O). Kẻ đường kính AA' của đường tròn (O).
Sách bài tập Toán 10 Kết nối tri thức Bài 7: Các khái niệm mở đầu
Bài 4.5 trang 47 sách bài tập Toán lớp 10 Tập 1: Cho tam giác ABC không vuông, với trực tâm H, nội tiếp đường tròn (O). Kẻ đường kính AA' của đường tròn (O).
a) Chứng minh rằng
b) Gọi M là trung điểm cạnh BC. Tìm mối quan hệ về phương, hướng và độ dài của hai vectơ và
Lời giải:
a) Vì H là trực tâm tam giác ABC nên CH ⊥ AB
Mặt khác AA' là đường kính của (O), B ∈ (O) nên
Do đó AA' ⊥ AB
Suy ra CH // AA' (từ vuông góc đến song song)
Chứng minh tương tự ta cũng có BH // A'C
Tứ giác BHCA' có CH // AA' và BH // A'C
Suy ra BHCA' là hình bình hành
Do đó
b) Ta có: O và M lần lượt là trung điểm của AA' và BC
Nên OM là đường trung bình của tam giác AA'H
Do đó AH = 2OM và OM // AH (tính chất đường trung bình)
Vậy, hai vectơ và có:
+ Cùng phương
+ Cùng hướng