Giải SBT Toán 10 trang 25 Tập 2 Kết nối tri thức
Với Giải SBT Toán 10 trang 25 Tập 2 trong Bài tập cuối chương 6 Sách bài tập Toán 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 25.
- Bài 6.47 trang 25 SBT Toán lớp 10 Tập 2
- Bài 6.48 trang 25 SBT Toán lớp 10 Tập 2
- Bài 6.49 trang 25 SBT Toán lớp 10 Tập 2
- Bài 6.50 trang 25 SBT Toán lớp 10 Tập 2
- Bài 6.51 trang 25 SBT Toán lớp 10 Tập 2
- Bài 6.52 trang 25 SBT Toán lớp 10 Tập 2
- Bài 6.53 trang 25 SBT Toán lớp 10 Tập 2
- Bài 6.54 trang 25 SBT Toán lớp 10 Tập 2
Giải SBT Toán 10 trang 25 Tập 2 Kết nối tri thức
Bài 6.47 trang 25 Sách bài tập Toán lớp 10 Tập 2: Tập nghiệm của bất phương trình x2 – 4x + 3 < 0 là
A. (1; 3);
B. (–∞; 1)∪[3; +∞);
C. [1; 3];
D. (–∞; 1]∪[4; +∞).
Hướng dẫn giải:
Đáp án đúng là: A
x2 – 4x + 3 < 0 (*)
Xét tam thức f(x) = x2 – 4x + 3 < 0 có:
a = 1 > 0
Δ = (–4)2 – 4.1.3 = 4 > 0
f(x) = x2 – 4x + 3 = 0 ⇔ x1 = 1; x2 = 3
Do đó, x2 – 4x + 3 < 0 ⇔ 1 < x < 3.
Vậy tập nghiệm của bất phương trình (*) là: (1; 3).
Bài 6.48 trang 25 Sách bài tập Toán lớp 10 Tập 2: Các giá trị của tham số m làm cho biểu thức f(x) = x2 + 4x + m – 5 luôn dương là
A. m ≥ 9;
B. m > 9;
C. Không có m;
D. m < 9.
Hướng dẫn giải:
Đáp án đúng là: B
Xét tam thức f(x) = x2 + 4x + m – 5 có:
a = 1 > 0
f(x) luôn dương ⇔ Δ < 0
⇔ 42 – 4.1.(m – 5) < 0
⇔ 16 – 4m + 20 < 0
⇔ 4m > 36
⇔ m > 9.
Bài 6.49 trang 25 Sách bài tập Toán lớp 10 Tập 2: Phương trình (m + 2) x2 – 3x + 2m – 3 = 0 có hai nghiệm trái dấu khi và chỉ khi
A. m < –2 hoặc ;
B. ;
C. ;
D. m < 2.
Hướng dẫn giải:
Đáp án đúng là: C
Phương trình (m + 2) x2 – 3x + 2m – 3 = 0 có hai nghiệm trái dấu khi và chỉ khi
ac < 0
⇔ (m + 2)(2m – 3) < 0
⇔ 2m2 – 3m + 4m – 6 < 0
⇔ 2m2 + m – 6 < 0
Xét tam thức f(x) = 2m2 + m – 6 có:
a = 2 > 0
Δ = 12 – 4.1.(–6) = 25 > 0
f(x) = 2m2 + m – 6 = 0 có hai nghiệm là: x1 = –2; x2 = .
Do đó, 2m2 + m – 6 < 0 ⇔ –2 < x <
Vậy phương trình (m + 2) x2 – 3x + 2m – 3 = 0 có hai nghiệm trái dấu khi và chỉ khi .
Bài 6.50 trang 25 Sách bài tập Toán lớp 10 Tập 2: Bất phương trình mx2 – (2m – 1)x + m + 1 < 0 vô nghiệm khi và chỉ khi
A. ;
B. ;
C. ;
D. .
Hướng dẫn giải:
Đáp án đúng là: D
+) Khi m = 0, ta có:
mx2 – (2m – 1)x + m + 1 < 0
⇔ x + 1 < 0
⇔ x < –1
Do đó, m = 0 không thỏa mãn yêu cầu đề bài
+) Khi m ≠ 0, ta có:
Xét tam thức: f(x) = mx2 – (2m – 1)x + m + 1 có:
a = m,
∆ = [–(2m – 1)2] – 4.m.(m + 1) = 4m2 – 4m + 1 – 4m2 – 4m = –8m + 1
Để mx2 – (2m – 1)x + m + 1 < 0 vô nghiệm khi và chỉ khi mx2 – (2m – 1)x + m + 1 ≥ 0 với mọi số thực x
Vậy khi thì bất phương trình mx2 – (2m – 1)x + m + 1 < 0 vô nghiệm.
Bài 6.51 trang 25 Sách bài tập Toán lớp 10 Tập 2: Số nghiệm của phương trình là
A. 0;
B. 1;
C. 2;
D. 3.
Hướng dẫn giải:
Đáp án đúng là: A
(*)
Bình phương hai vế (*) ta có:
x2 + 4x – 2 = (x – 3)2
⇔x2 + 4x – 2 = x2 – 6x + 9
⇔ 10x = 11
⇔
Thay vào (*) ta có:
(không thỏa mãn)
Vậy phương trình (*) vô nghiệm.
Bài 6.52 trang 25 Sách bài tập Toán lớp 10 Tập 2: Tập nghiệm của phương trình là
A. S = {6};
B. S = ∅;
C. S = {–3};
D. S = {–3; 6}.
Hướng dẫn giải:
Đáp án đúng là: C
(*)
Bình phương hai vế (*) ta có:
2x2 – 9x – 9 = (3 – x)2
⇔2x2 – 9x – 9 = 9 – 6x + x2
⇔ x2 – 3x – 18 = 0
⇔ x = 6 hoặc x = –3
Thay x = 6 vào (*) ta có:
(không thỏa mãn)
Thay x = –3 vào (*) ta có:
(thỏa mãn)
Vậy tập nghiệm của phương trình (*) là: S = {–3}.
Bài 6.53 trang 25 Sách bài tập Toán lớp 10 Tập 2: Tập nghiệm của phương trình là
A. S = {2};
B. S = {5};
C. S = ∅;
D. S = {2; 5}.
Hướng dẫn giải:
Đáp án đúng là: B
(*)
Bình phương hai vế của (*) ta có:
2x2 – 5x + 1 = x2 + 2x – 9
⇔ x2 – 7x + 10 = 0
⇔ x = 5 hoặc x = 2
Thay x = 5 vào (*) ta có:
(thỏa mãn)
Thay x = 2 vào (*) ta có:
(không thể tồn tại)
Vậy tập nghiệm của phương trình (*) là: S = {5}.
Bài 6.54 trang 25 Sách bài tập Toán lớp 10 Tập 2: Tìm tập xác định của các hàm số sau:
a) ;
b) .
Hướng dẫn giải:
a)
Điều kiện xác định của hàm số là: –x2 + 3x – 2 ≥ 0
Xét tam thức f(x) = –x2 + 3x – 2 có:
a = –1 < 0
∆ = 32 – 4.(–1).(–2) = 1 > 0
f(x) = 0 có hai nghiệm phân biệt là: x1 = 2 ; x2 = 1
Do đó, ta có:
–x2 + 3x – 2 ≥ 0
⇔ 1 ≤ x ≤ 2
Vậy tập xác định của hàm số là: D = [1; 2].
b)
Điều kiện xác định của hàm số là:
x2 – 1 > 0
⇔ x2 > 1
⇔ x < –1 hoặc x > 1
Vậy tập xác định của hàm số là: D = (–∞; –1)∪(1; +∞).
Lời giải sách bài tập Toán lớp 10 Bài tập cuối chương 6 Kết nối tri thức hay khác: