Giải SBT Toán 10 trang 46 Tập 2 Kết nối tri thức
Với Giải SBT Toán 10 trang 46 Tập 2 trong Bài 22: Ba đường conic Sách bài tập Toán 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 46.
- Bài 7.28 trang 46 SBT Toán lớp 10 Tập 2
- Bài 7.29 trang 46 SBT Toán lớp 10 Tập 2
- Bài 7.30 trang 46 SBT Toán lớp 10 Tập 2
- Bài 7.31 trang 46 SBT Toán lớp 10 Tập 2
- Bài 7.32 trang 46 SBT Toán lớp 10 Tập 2
- Bài 7.33 trang 46 SBT Toán lớp 10 Tập 2
- Bài 7.34 trang 46 SBT Toán lớp 10 Tập 2
- Bài 7.35 trang 46 SBT Toán lớp 10 Tập 2
Giải SBT Toán 10 trang 46 Tập 2 Kết nối tri thức
Bài 7.28 trang 46 Sách bài tập Toán lớp 10 Tập 2: Cho elip (E) có phương trình . Tìm tiêu điểm và tiêu cự của elip.
Hướng dẫn giải:
Dựa vào phương trình chính tắc của (E) ta có
Vậy (E) có hai tiêu điểm là: và có tiêu cự là: .
Bài 7.29 trang 46 Sách bài tập Toán lớp 10 Tập 2: Cho hypebol (H) có phương trình . Tìm tiêu điểm và tiêu cự của hypebol.
Hướng dẫn giải:
Dựa vào phương trình chính tắc của (H) ta có
Vậy (H) có hai tiêu điểm là F1 (–6; 0), F2(6; 0) và có tiêu cự là 2c = 12.
Bài 7.30 trang 46 Sách bài tập Toán lớp 10 Tập 2: Cho parabol (P) có phương trình y2 = 4x. Tìm tiêu điểm và đường chuẩn của parabol.
Hướng dẫn giải:
Dựa vào phương trình chính tắc y2 = 4x của (P) ta có:
2p = 4 ⇔ p = 2 ⇔ .
Vậy (P) có tiêu điểm là F(1; 0) và có đường chuẩn là Δ: x = –1.
Bài 7.31 trang 46 Sách bài tập Toán lớp 10 Tập 2: Viết phương trình chính tắc của elip (E), biết (E) đi qua điểm A(6; 0) và có tiêu cự bằng 8.
Hướng dẫn giải:
Phương trình chính tắc của (E) có dạng (trong đó a > b > 0)
Vì (E) đi qua điểm A(6; 0) nên ta có ⇔ a2 = 62
Do (E) có tiêu cự là 2c = 8 nên ta có c = 4 ⇒ b2 = a2 – c2 = 62 – 42 = 20.
Vậy phương trình chính tắc của (E) là: .
Bài 7.32 trang 46 Sách bài tập Toán lớp 10 Tập 2: Viết phương trình chính tắc của hypebol (H), biết (H) đi qua điểm và có một tiêu điểm là F2(5; 0).
Hướng dẫn giải:
Phương trình chính tắc của (H) có dạng: (trong đó a, b > 0)
Do (H) có một tiêu điểm là F2(5; 0) nên ta có:
c = 5 ⇒ b2 + a2 = c2 = 25 ⇔ a2 = 25 – b2
Vì (H) đi qua điểm nên ta có
(1)
Đặt t = b2 (t > 0) ⇒ a2 = 25 – t. Thay vào (1) ta được
⇒ 18t – 16(25 – t) = (25 – t)t
⇔ 18t – 400 + 16t = 25t – t2
⇔ t2 + 9t – 400 = 0
⇔ t = 16 (thỏa mãn) hoặc t = –25 (không thỏa mãn)
Do đó, b2 = t = 16, a2 = 25 – t = 9.
Vậy phương trình chính tắc của (H) là: .
Bài 7.33 trang 46 Sách bài tập Toán lớp 10 Tập 2: Viết phương trình chính tắc của parabol (P), biết rằng (P) có đường chuẩn là đường thẳng Δ: x + 4 = 0. Tìm toạ độ điểm M thuộc (P) sao cho khoảng cách từ M đến tiêu điểm của (P) bằng 5.
Hướng dẫn giải:
Phương trình chính tắc của (P) có dạng y2 = 2px, trong đó p > 0.
Vì (P) có đường chuẩn là Δ: x + 4 = 0 ⇔ x = –4 ⇔ –p : 2 = –4 ⇔ p = 8
Vậy phương trình chính tắc của (P) là y2 = 16x.
Gọi M (x0; y0).
Vì M thuộc (P) nên ta có:
d(M, Δ) = MF = 5 với F là tiêu điểm của (P) và F(4; 0).
⇔ |x0 + 4| = 5 (*)
TH1: x0 + 4 ≥ 0 hay x0 ≥ –4
(*) ⇔ x0 + 4 = 5 ⇔ x0 = 1 (thỏa mãn)
TH2: x0 + 4 < 0 hay x0 < –4
(*) ⇔ –x0 – 4 = 5 ⇔ x0 = –9 (thỏa mãn)
Với x0 = –9, thay vào phương trình của (P) ta được y02 = 16.(–9) = –144 < 0 (không thể tồn tại)
Với x0 = 1, thay vào phương trình của (P) ta được y02 = 16.1 = 16 ⇔ y0 = ±4
Vậy M(1; 4) hoặc M(1; –4).
Bài 7.34 trang 46 Sách bài tập Toán lớp 10 Tập 2: Cho parabol (P) có phương trình là y2 = 16x. Gọi Δ là đường thẳng bất kì đi qua tiêu điểm F của (P) và không trùng với trục hoành. Chứng minh rằng Δ luôn cắt (P) tại hai điểm phân biệt A, B, đồng thời tích các khoảng cách từ A và B đến trục hoành không đổi.
Hướng dẫn giải:
Gọi vectơ chỉ phương của Δ là . Vì Δ đi qua điểm F(4; 0) và Δ không trùng với trục Ox nên ta có b ≠ 0. Phương trình tham số của Δ là
Toạ độ giao điểm của Δ và (P) ứng với thoả mãn phương trình
(bt)2 =16 . (4 + at) ⇔ b2t2 – 16at – 64 = 0. (1)
Phương trình (1) có Δ’ = 64a2 + 64b2 > 0 (do b ≠ 0), suy ra phương trình (1) luôn có 2 nghiệm phân biệt. Vậy Δ luôn cắt (P) tại hai điểm phân biệt A, B.
Gọi A(4 + at1; bt1), B(4 + at2; bt2), trong đó t1, t2 là hai nghiệm của phương trình (1).
Ta có
Dựa vào phương trình (1). Theo định lí Vi–ét ta có: . Từ đó suy ra
Vậy tích các khoảng cách từ A và B đến trục hoành không đổi.
Bài 7.35 trang 46 Sách bài tập Toán lớp 10 Tập 2: Một người kĩ sư thiết kế một đường hầm một chiều có mặt cắt là một nửa hình elip, chiều rộng của hầm là 12 m, khoảng cách từ điểm cao nhất của elip so với mặt đường là 3 m. Người kĩ sư này muốn đưa ra cảnh báo cho các loại xe có thể đi qua hầm. Biết rằng những loại xe tải có chiều cao 2,8 m thì có chiều rộng không quá 3 m. Hỏi chiếc xe tải có chiều cao 2,8 m có thể đi qua hầm được không?
Hướng dẫn giải:
Giả sử phương trình chính tắc của (E) là: (trong đó a > b > 0).
Vì chiều rộng của hầm là 12 m nên OA = 12 : 2 = 6 (m), do đó điểm A có tọa độ (6; 0).
Khoảng cách từ điểm cao nhất của elip so với mặt đường là 3 m nên OB = 3 m, do đó điểm B có tọa độ (0; 3).
Do các điểm B(0; 3) và A(6; 0) thuộc (E) nên thay vào phương trình của (E) ta có:
Suy ra phương trình của (E) là
.
Với những xe tải có chiều cao 2,8 m, chiều rộng của xe tải là 3 m, nếu xe chạy chính giữa hầm thì khoảng cách từ tâm xe tới mỗi bên xe khoảng 3 : 2 = 1,5 m, tương ứng với x = 1,5. Thay vào phương trình của elip để ta tìm ra độ cao y của điểm M (có hoành độ bằng 1,5 thuộc (E)) so với trục Ox.
Suy ra:
Kết luận: Ô tô tải có thể đi được qua hầm, tuy nhiên cần khuyến cáo ô tô phải đi vào chính giữa hầm.
Lời giải sách bài tập Toán lớp 10 Bài 22: Ba đường conic Kết nối tri thức hay khác: