Bài 43 trang 45 SBT Toán 11 Tập 2


Cho ba số thực dương a, b, c khác 1 và đồ thị của ba hàm số lôgarit y = logx, y = logx, y = logx được cho bởi . Kết luận nào sau đây là đúng đối với ba số a, b, c?

Giải sách bài tập Toán 11 Bài 3: Hàm số mũ. Hàm số lôgarit

Bài 43 trang 45 SBT Toán 11 Tập 2: Cho ba số thực dương a, b, c khác 1 và đồ thị của ba hàm số lôgarit y = logax, y = logbx, y = logcx được cho bởi Hình 4. Kết luận nào sau đây là đúng đối với ba số a, b, c?

Bài 43 trang 45 SBT Toán 11 Tập 2

A. c > b > a;

B. a > b > c;

C. b > a > c;

D. c > a > b.

Lời giải:

Đáp án đúng là: C

Hàm số lôgarit y = logc x nghịch biến trên (0; +∞) nên 0 < c < 1. (1)

Hàm số lôgarit y = logax, y = logbx đồng biến trên (0; +∞) nên a > 1 và b > 1 (2)

Bài 43 trang 45 SBT Toán 11 Tập 2

Với x = 100, từ đồ thị ta thấy:

loga100>logb100>0

1log100a>1log100b

1log100a>1log100b

log100a<log100ba<b (do 100 > 1) (3)

Từ (1), (2) và (3) ta có: b > a > c.

Lời giải SBT Toán 11 Bài 3: Hàm số mũ. Hàm số lôgarit hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Cánh diều hay, chi tiết khác: