Chứng minh rằng trong một hình hộp, tổng bình phương của bốn đường chéo bằng tổng bình phương
Chứng minh rằng trong một hình hộp, tổng bình phương của bốn đường chéo bằng tổng bình phương của tất cả các cạnh.
Giải SBT Toán 11 Cánh diều Bài 5: Hình lăng trụ và hình hộp
Bài 44 trang 113 SBT Toán 11 Tập 1: Chứng minh rằng trong một hình hộp, tổng bình phương của bốn đường chéo bằng tổng bình phương của tất cả các cạnh.
Lời giải:
Trước hết ta chứng minh một kết quả trong hình học phẳng: Trong hình bình hành, tổng bình phương của hai đường chéo bằng tổng bình phương tất cả các cạnh.
Xét hình bình hành MNPQ:
Áp dụng định lí côsin trong các tam giác MPQ và QPN, ta có:
MP2 = QM2 + QP2 – 2QM . QP . cos
QN2 = PQ2 + PN2 – 2PQ . PN . cos
Do QM = PN và (do hai góc bù nhau) nên ta có:
MP2 + QN2 = 2(QM2 + QP2).
Xét hình hộp ABCD.A'B'C'D':
Áp dụng kết quả trên cho hai hình bình hành AA'C'C và BB'D'D ta được:
AC'2 + A'C2 = 2(AA'2 + A'C'2)
BD'2 + B'D2 = 2(BB'2 + B'D'2)
Suy ra AC'2 + A'C2 + BD'2 + B'D2 = 4AA'2 + 2(A'C'2 + B'D'2) (do AA' = BB').
Mặt khác, trong hình bình hành A'B'C'D', ta có: A'C'2 + B'D'2 = 2(A'B'2 + A'D'2).
Vậy AC'2 + A'C2 + BD'2 + B'D2 = 4AA'2 + 4A'B'2 + 4A'D'2.
Từ đó suy ra điều phải chứng minh.
Lời giải Sách bài tập Toán lớp 11 Bài 5: Hình lăng trụ và hình hộp hay khác:
Bài 36 trang 112 SBT Toán 11 Tập 1: Số đường chéo trong một hình hộp là ....
Bài 38 trang 112 SBT Toán 11 Tập 1: Cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây là sai? ....