Cho tứ diện ABCD. Trên các cạnh AC, CD lần lượt lấy các điểm E, F sao cho CE = 3EA, DF = 2FC
Cho tứ diện ABCD. Trên các cạnh AC, CD lần lượt lấy các điểm E, F sao cho CE = 3EA, DF = 2FC.
Giải SBT Toán 11 Cánh diều Bài 1: Đường thẳng và mặt phẳng trong không gian
Bài 6 trang 95 SBT Toán 11 Tập 1: Cho tứ diện ABCD. Trên các cạnh AC, CD lần lượt lấy các điểm E, F sao cho CE = 3EA, DF = 2FC.
a) Xác định giao tuyến của mặt phẳng (BEF) với các mặt phẳng (ABC), (ACD), (BCD).
b) Xác định giao điểm K của đường thẳng AD với mặt phẳng (BEF).
c) Xác định giao tuyến của hai mặt phẳng (BEF) và (ABD).
Lời giải:
a) Vì E ∈ AC mà AC ⊂ (ABC) nên E ∈ (ABC) và E ∈ (BEF) nên E ∈ (ABC) ∩ (BEF).
Lại có B ∈ (BEF), B ∈ (ABC) nên B ∈ (BEF) ∩ (ABC).
Do vậy, BE = (BEF) ∩ (ABC).
Tương tự ta có EF = (BEF) ∩ (ACD) và BF = (BEF) ∩ (BCD).
b) Trong mặt phẳng (ACD), lấy K là giao điểm của AD và EF.
Khi đó, K ∈ (BEF). Suy ra K là giao điểm của AD và (BEF).
c) Vì K ∈ AD và AD ⊂ (ABD) nên K ∈ (ABD).
Theo câu b) ta có K ∈ (BEF).
Do đó, hai mặt phẳng (BEF) và (ABD) có hai điểm chung là B và K.
Vậy giao tuyến của mặt phẳng (BEF) và mặt phẳng (ABD) là đường thẳng BK.
Lời giải Sách bài tập Toán lớp 11 Bài 1: Đường thẳng và mặt phẳng trong không gian hay khác: