Cho hình chóp S.ABCD có ABCD là hình thang đáy lớn AD. Gọi E, F lần lượt


Cho hình chóp S.ABCD có ABCD là hình thang đáy lớn AD. Gọi E, F lần lượt là hai điểm trên hai cạnh SB, SD.

Giải sách bài tập Toán 11 Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian - Chân trời sáng tạo

Bài 1 trang 112 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD có ABCD là hình thang đáy lớn AD. Gọi E, F lần lượt là hai điểm trên hai cạnh SB, SD.

a) Tìm giao điểm của EF với (SAC).

b) Tìm giao điểm của BC với (AEF).

Lời giải:

Cho hình chóp S.ABCD có ABCD là hình thang đáy lớn AD. Gọi E, F lần lượt

a) ⦁ Trong mặt phẳng (ABCD), gọi O = AC ∩ BD.

Ta có O ∈ AC, AC ⊂ (SAC) nên O ∈ (SAC)

          O ∈ BD, BD ⊂ (SBD) nên O ∈ (SBD)

Do đó O ∈ (SAC) ∩ (SBD)

⦁ Lại có S ∈ (SAC) và S ∈ (SBD) nên S ∈ (SAC) ∩ (SBD)

Suy ra (SAC) ∩ (SBD) = SO.

Trong mặt phẳng (SBD), gọi I = EF ∩ SO.

Ta có I ∈ SO, SO ⊂ (SAC) nên I ∈ (SAC)

Vậy EF ∩ (SAC) = I.

b) ⦁ Trong mặt phẳng (SBD), gọi K = EF ∩ BD.

Ta có K ∈ EF, EF ⊂ (AEF) nên K ∈ (AEF);

          K ∈ BD, BD ⊂ (ABCD) nên K ∈ (ABCD)

Do đó K ∈ (ABCD) ∩ (AEF).

Lại có A ∈ (ABCD) và ∈ (AEF) nên A = (ABCD) ∩ (AEF).

Suy ra (ABCD) ∩ (AEF) = AK.

⦁ Trong mặt phẳng (ABCD), gọi H = BC ∩ AK.

Ta có H ∈ AK, AK ⊂ (AEF) nên H ∈ (AEF).

Vậy BC ∩ (AEF) = H.

Lời giải Sách bài tập Toán lớp 11 Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác: