Cho hình chóp S.ABCD. Gọi D, E, F lần lượt là ba điểm trên ba cạnh SA, SB, SC


Cho hình chóp S.ABCD. Gọi D, E, F lần lượt là ba điểm trên ba cạnh SA, SB, SC sao cho DE cắt AB tại I, EF cắt BC tại J, FD cắt CA tại K. Chứng minh ba điểm I, J, K thẳng hàng.

Giải sách bài tập Toán 11 Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian - Chân trời sáng tạo

Bài 2 trang 112 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD. Gọi D, E, F lần lượt là ba điểm trên ba cạnh SA, SB, SC sao cho DE cắt AB tại I, EF cắt BC tại J, FD cắt CA tại K. Chứng minh ba điểm I, J, K thẳng hàng.

Lời giải:

Cho hình chóp S.ABCD. Gọi D, E, F lần lượt là ba điểm trên ba cạnh SA, SB, SC

Ta có: I là giao điểm của DE và AB.

Suy ra:

⦁ I ∈ DE, mà DE ⊂ (DEF) nên I ∈ (DEF);

⦁ I ∈ AB, mà AB ⊂ (ABC) nên I ∈ (ABC).

Do đó I ∈ (DEF) ∩ (ABC).

Tương tự, ta có J, K cũng thuộc giao tuyến của hai mặt phẳng (DEF), (ABC).

Vậy I, J, K thẳng hàng.

Lời giải Sách bài tập Toán lớp 11 Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác: