Cho đa thức P(x) = 4x^4 + 2x^3 – x^4 – x^2
Cho đa thức P(x) = 4x + 2x – x – x.
Giải sách bài tập Toán lớp 7 Bài 2: Đa thức một biến. Nghiệm của đa thức một biến
Bài 20 trang 43 sách bài tập Toán lớp 7 Tập 2: Cho đa thức P(x) = 4x4 + 2x3 – x4 – x2.
a) Tìm bậc, hệ số cao nhất, hệ số tự do của đa thức P(x).
b) Mỗi phần tử của tập hợp có là nghiệm của đa thức P(x) không? Vì sao?
Lời giải:
a) Ta có:
P(x) = 4x4 + 2x3 – x4 – x2
= (4x4 – x4) + 2x3 – x2
= 3x4 + 2x3 – x2
Đa thức P(x) có bậc là 4, hệ số cao nhất là 3 và hệ số tự do là 0.
b)
• Thay x = ‒1 vào P(x) = 3x4 + 2x3 – x2 ta được:
P(‒1) = 3 . (‒1)4 + 2 . (‒1)3 – (‒1)2
= 3 . 1 + 2 . (‒1) – 1
= 0.
Do đó x = ‒1 là nghiệm của đa thức P(x).
• Thay x = vào P(x) = 3x4 + 2x3 – x2 ta được:
.
Vì ≠ 0 nên x = không là nghiệm của đa thức P(x).
Vậy phần tử ‒1 của là nghiệm của đa thức P(x).