X

Giải SBT Toán 7 Cánh diều

Cho tam giác ABC có AB = AC. Gọi D là trung điểm của BC. Vẽ CM vuông góc với AB tại M


Cho tam giác ABC có AB = AC. Gọi D là trung điểm của BC. Vẽ CM vuông góc với AB tại M, BN vuông góc với AC tại N. Chứng minh AM = AN.

Giải sách bài tập Toán lớp 7 Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc - cạnh - góc

Bài 39 trang 81 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC có AB = AC. Gọi D là trung điểm của BC. Vẽ CM vuông góc với AB tại M, BN vuông góc với AC tại N. Chứng minh AM = AN.

Lời giải:

Cho tam giác ABC có AB = AC. Gọi D là trung điểm của BC. Vẽ CM vuông góc với AB tại M

Xét ∆ABD và ∆ACD có:

AB = AC (giả thiết),

BD = CD (do D là trung điểm của BC),

AD là cạnh chung

Do đó ∆ABD = ∆ACD (c.c.c).

Suy ra ABD^=ACD^ hay MBC^=NCB^ .

Xét ∆BMC và ∆CNB có:

BMC^=CNB^=90°,

BC là cạnh chung,

MBC^=NCB^ (chứng minh trên),

Do đó ∆BMC và ∆CNB (cạnh huyền – góc nhọn).

Suy ra BM = CN (hai cạnh tương ứng).

Ta có AB = AM + MB, AC = AN + NC.

Mà AB = AC, BM = CN.

Suy ra AM = AN.

Vậy AM = AN.

Xem thêm các bài giải sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác: