Cho tam giác ABC có góc A = 90 độ, M là trung điểm của BC. Chứng minh BC = 2AM
Cho tam giác ABC có , M là trung điểm của BC. Chứng minh BC = 2AM.
Giải sách bài tập Toán lớp 7 Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc - cạnh - góc
Bài 42 trang 81 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC có , M là trung điểm của BC. Chứng minh BC = 2AM.
Lời giải:
Qua C kẻ đường thẳng d song song với AB, d cắt AM tại N.
Suy ra (hai góc so le trong).
Ta có BA ⊥ AC, d // AB.
Suy ra d ⊥ AC hay .
Xét ∆MBA và ∆MCN có:
BM = CM (vì M là trung điểm của BC),
(hai góc đối đỉnh),
(chứng minh trên)
Do đó ∆MBA = ∆MCN (g.c.g).
Suy ra AB = CN và AM = NM (các cặp cạnh tương ứng).
Xét ∆BAC và ∆NCA có:
AC là cạnh chung,
(cùng bằng 90o),
AB = NC (chứng minh trên)
Do đó ∆BAC = ∆NCA (c.g.c)
Suy ra BC = NA (hai cạnh tương ứng).
Mà AM = MN, AN = AM + MN = 2AM.
Nên BC = AN = 2AM.
Vậy 2AM = BC.