X

Giải SBT Toán 7 Cánh diều

SBT Toán 7 trang 10 Tập 1 Cánh diều


Haylamdo biên soạn và sưu tầm lời giải SBT Toán 7 trang 10 Tập 1 trong Bài 1: Tập hợp Q các số hữu tỉ. Với lời giải chi tiết nhất hy vọng sẽ giúp học sinh dễ dàng nắm được cách làm bài tập SBT Toán lớp 7.

Giải SBT Toán 7 trang 10 Tập 1 Cánh diều

Bài 7 trang 10 Sách bài tập Toán 7 Tập 1: So sánh:

a) 3211 và 3,2;

b) 5211 và −0,01;

c) 10515 và −7,112;

d) −943,001 và 943,0001.

Lời giải:

a) 3211 và 3,2

Ta có: 3211=3511=17555 ; 3,2=165=17655 .

Vì 175 < 176 nên 17555<17655 hay 3211<3,2 .

Vậy 3211<3,2 .

b) 5211 và −0,01

Ta có 0,01=1100=5500 .

Vì 211 < 500 nên 5211>5500

Suy ra 5211<5500 hay 5211<0,01 .

Vậy 5211<0,01 .

c) 10515 và −7,112

Ta có: 10515=7 .

Số đối của −7 và −7,112 lần lượt là 7 và 7,112.

Vì 7 < 7,112 nên −7 > −7,112.

Vậy −7 > −7,112.

d) −943,001 và 943,0001.

Ta có: −943,001 < 0 và 943,0001 > 0.

Vậy −943,001 < 943,0001.

Bài 8 trang 10 Sách bài tập Toán 7 Tập 1: Sắp xếp các số sau theo thứ tự tăng dần:

a) 3211;  2112;  1521;  1721 ;

b) −5,12; 0,534; −23; 123; 0; 0,543.

Lời giải:

a) Ta có 3211>1;  2112>1 ; 1521<1;  1721<1.

∙ Nhóm các số lớn hơn 1: 3211;  2112 .

Ta thấy hai hỗn số 3211;  2112 có phần nguyên 2 < 3 nên 2112<3211 .

∙ Nhóm các số nhỏ hơn 1: 1521;  1721.

Vì 15 < 17 nên 1521<1721 .

Do đó 1521<1721<2112<3211 .

Vậy các số sau theo thứ tự tăng dần là 1521;  1721;  2112;  3211 .

b) ∙ Nhóm các số dương: 0,534; 123; 0,543.

Ta có: 0,534 < 0,543 < 123.

∙ Nhóm các số âm: −5,12; −23.

Ta có: −23 < −5,12.

Do đó −23 < −5,12 < 0 < 0,534 < 0,543 < 123.

Vậy các số được sắp xếp theo thứ tự tăng dần: −23; −5,12; 0; 0,534; 0,543; 123.

Bài 9 trang 10 Sách bài tập Toán 7 Tập 1: Sắp xếp các số sau theo thứ tự giảm dần:

a) 215;  23;  78;  56;  79 ;

b) 1922;  0,5;  14;  0,05;  216 .

Lời giải:

a) ∙ Nhóm các phân số dương: 215;  23;  56 .

Ta có: 215=430;  23=2030;  56=2530 .

Vì 25 > 20 > 4 nên 2530>2030>430 .

Suy ra 56>23>215 .

∙ Nhóm các phân số âm: 78;  79 .

Ta có: 78=6372;  79=5672 .

Vì −56 > −63 nên 5672>6372 hay 79>78 .

Do đó 56>23>215>79>78 .

Vậy các số được sắp xếp theo thứ tự giảm dần: 56;  23;  215;  79;  78 .

b) ∙ Nhóm các số dương: 1922;  0,5;  216 .

Ta thấy: 216>1 (vì hỗn số 216 có phần nguyên 2 > 1).

1922<1 (phân số có tử số bé hơn mẫu số); 0,5 < 1.

Ta có: 0,5=12=1122 .

Vì 19 < 11 nên 1922>1122 hay 1922>0,5 .

Do đó 216>1922>0,5 . (1)

∙ Nhóm các số âm: 14;  0,05 .

Ta có: 14=0,25 .

Vì −0,05 > −0,25 nên 0,05>14 . (2)

Từ (1) và (2) suy ra: 216>1922>0,5>0,05>14 .

Vậy các số được sắp xếp theo thứ tự giảm dần: 216;  1922;  0,5;  0,05;  14 .

Bài 10 trang 10 Sách bài tập Toán 7 Tập 1: Cho số hữu tỉ y=2a43 (a là số nguyên). Với giá trị nào của a thì:

a) y là số nguyên?

b) y không là số hữu tỉ âm và cũng không là số hữu tỉ dương?

Lời giải:

a) Ta có: 2a – 4 = 2(a – 2).

Với y là số nguyên thì (2a – 4) ⋮ 3 hay 2(a – 2) ⋮ 3.

Vì ƯCLN(2, 3) = 1 nên (a – 2) ⋮ 3 hay a – 2 = 3k (k ∈ ℤ).

Suy ra a = 3k + 2.

Vậy a là số chia 3 dư 2.

b) Với y không là số hữu tỉ âm và cũng không là số hữu tỉ dương nên y = 0.

Suy ra 2a – 4 = 0 hay a = 2.

Vậy a = 2.

Lời giải Sách bài tập Toán lớp 7 Bài 1: Tập hợp Q các số hữu tỉ Cánh diều hay khác:

Xem thêm lời giải Sách bài tập Toán lớp 7 sách Cánh diều hay, chi tiết khác: