Giải SBT Toán 7 trang 33 Tập 2 Chân trời sáng tạo
Haylamdo biên soạn và sưu tầm lời giải SBT Toán 7 trang 33 Tập 2 trong Bài tập cuối chương 7 Sách bài tập Toán lớp 7 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 trang 33.
Giải SBT Toán 7 trang 33 Tập 2 Chân trời sáng tạo
Bài 1 trang 33 sách bài tập Toán lớp 7 Tập 2: Cho B = xy3 + 4xy – 2x2 + 3. Tính giá trị của biểu thức B khi x = –1, y = 2.
Lời giải:
Khi x = –1, y = 2 thay vào biểu thức B ta được:
B = (–1) . 23 + 4 . (–1) . 2 – 2 . (–1)2 + 3
= –8 – 8 – 2 + 3
= –15.
Vậy giá trị của biểu thức B khi x = –1, y = 2 là B = –15.
Bài 2 trang 33 sách bài tập Toán lớp 7 Tập 2:
Trong các biểu thức sau, biểu thức nào là đơn thức một biến?
a) 2y;
b) 3x + 5;
c) 12;
d) t2.
Lời giải:
Ta có:
+ Biểu thức a) là đơn thức một biến của biến y;
+ Biểu thức b) là đa thức một biến của biến x;
+ Biểu thức c) là đơn thức một biến.
+ Biểu thức d) là đơn thức một biến của biến t.
Vậy trong các biểu thức trên, biểu thức a), c), d) là đơn thức một biến.
Bài 3 trang 33 sách bài tập Toán lớp 7 Tập 2: Trong các biểu thức sau, biểu thức nào là đa thức một biến?
5 – 2x;
6x2 + 8x3 + 3x – 2;
;
t – 5.
Lời giải:
Ta có:
+ Biểu thức 5 – 2x là đa thức một biến của biến x;
+ Biểu thức 6x2 + 8x3 + 3x – 2 là đa thức một biến của biến x;
+ Biểu thức không phải là đa thức một biến;
+ Biểu thức t – 5 là đa thức một biến của biến t.
Vậy trong các biểu thức trên, các biểu thức là đa thức một biến là: 5 – 2x; 6x2 + 8x3 + 3x – 2; t – 5.
Bài 4 trang 33 sách bài tập Toán lớp 7 Tập 2: Hãy viết một đa thức một biến bậc bốn có 5 số hạng.
Lời giải:
Đa thức một biến bậc bốn có 5 số hạng là:
A(x) = x4 – 2x3 + 3x2 – 4x + 5.
Nhận xét: Bài này có nhiều cách trả lời.
Bài 5 trang 33 sách bài tập Toán lớp 7 Tập 2: Hãy nêu bậc của các đa thức sau:
A = 5x2 – 2x4 + 7;
B = 17;
C = 3x – 4x3 + 2x2 + 1.
Lời giải:
• Ta có:
A = 5x2 – 2x4 + 7
= – 2x4 + 5x2 + 7
Đa thức A có bậc là 4 (vì số mũ lớn nhất của biến x là 4).
• Đa thức B = 17 có bậc là 0 (vì đa thức chỉ có số, không có biến x nên số mũ lớn nhất của biến là 0).
• Ta có:
C = 3x – 4x3 + 2x2 + 1
= – 4x3 + 2x2 + 3x + 1
Đa thức C có bậc là 3 (vì số mũ lớn nhất của biến x là 3).
Bài 6 trang 33 sách bài tập Toán lớp 7 Tập 2: Cho đa thức P(x) = x3 + 64. Tìm nghiệm của P(x) trong tập hợp {0; 4; –4}.
Lời giải:
Cách 1: Xét đa thức P(x) = x3 + 64.
• Với x = 0 thay vào P(x) ta có:
P(0) = 03 + 64 = 64.
Do đó x = 0 không là nghiệm của P(x).
• Với x = 4 thay vào P(x) ta có:
P(4) = 43 + 64 = 64 + 64 = 128.
Do đó x = 4 không là nghiệm của P(x).
• Với x = –4 thay vào P(x) ta có:
P(–4) = (–4)3 + 64 = –64 + 64 = 0.
Do đó x = –4 là nghiệm của P(x).
Vậy trong các số thuộc tập hợp {0; 4; –4} thì có –4 là nghiệm của P(x).
Cách 2: Xét đa thức P(x) = x3 + 64.
Ta có P(x) = 0
Hay x3 + 64 = 0
Suy ra x3 = –64 = (–4)3
Do đó x = –4.
Vậy trong các số thuộc tập hợp {0; 4; –4} thì số –4 là nghiệm của P(x).
Bài 7 trang 33 sách bài tập Toán lớp 7 Tập 2: Tam giác có độ dài hai cạnh là 3y + 2; 6y – 4 và chu vi bằng 23y – 5. Tìm cạnh chưa biết trong tam giác đó.
Lời giải:
Gọi A(y) là biểu thức biểu thị độ dài cạnh chưa biết trong tam giác đó.
Khi đó chu vi của tam giác đó là:
(3y + 2)+ (6y – 4)+ A(y)
= (3y + 6y) + (2 – 4) + A(y)
= 9y – 2 + A(y).
Mà theo bài tam giác đó có chu vi bằng 23y – 5 nên ta có:
9y – 2 + A(y) = 23y – 5
Suy ra A(y) = 23y – 5 – (9y – 2)
= 23y – 5 – 9y + 2
= (23y – 9y) + (–5 + 2)
= 14y – 3.
Vậy độ dài cạnh chưa biết trong tam giác đó là A(y) = 14y – 3.
Lời giải Sách bài tập Toán 7 Chân trời sáng tạo Bài tập cuối chương 7 Chân trời sáng tạo hay khác: